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Obesity is associated with vascular diseases that are
often attributed to vascular oxidative stress. We tested
the hypothesis that vascular oxidative stress could in-
duce obesity. We previously developed mice that over-
express p22phox in vascular smooth muscle, tgsm/p22phox,
which have increased vascular ROS production. At base-
line, tgsm/p22phox mice have a modest increase in body
weight. With high-fat feeding, tgsm/p22phox mice devel-
oped exaggerated obesity and increased fat mass. Body
weight increased from 32.16 6 2.34 g to 43.03 6 1.44 g in
tgsm/p22phox mice (vs. 30.81 6 0.71 g to 37.89 6 1.16 g in
the WT mice). This was associated with development
of glucose intolerance, reduced HDL cholesterol, and
increased levels of leptin and MCP-1. Tgsm/p22phox

mice displayed impaired spontaneous activity and in-
creased mitochondrial ROS production and mitochon-
drial dysfunction in skeletal muscle. In mice with
vascular smooth muscle–targeted deletion of p22phox
(p22phoxloxp/loxp/tgsmmhc/cre mice), high-fat feeding did
not induce weight gain or leptin resistance. These
mice also had reduced T-cell infiltration of perivascu-
lar fat. In conclusion, these data indicate that vascular
oxidative stress induces obesity and metabolic syn-
drome, accompanied by and likely due to exercise
intolerance, vascular inflammation, and augmented
adipogenesis. These data indicate that vascular ROS
may play a causal role in the development of obesity
and metabolic syndrome.

Obesity is recognized as the leading public health problem
in Western societies. Approximately one-third of American

men and women .20 years of age are obese (1). In addi-
tion to excessive energy intake, obese animals and humans
display reduced spontaneous activity and energy expendi-
ture. The mechanisms for this remain unclear, but impair-
ments in skeletal muscle perfusion and insulin uptake are
present in humans with diabetes and obesity (2). Likewise,
obesity and metabolic syndrome are commonly associated
with oxidative stress (3), which in turn likely contributes to
perturbations of tissue perfusion.

Obesity is also commonly associated with vascular
diseases including hypertension and atherosclerosis (4).
A major source of reactive oxygen species (ROS) in vascu-
lar cells is the NADPH oxidases (NOX enzymes) (5). These
enzymes are activated by various hormones, cytokines,
and altered mechanical forces. ROS produced by the
NOX enzymes can activate downstream enzymatic sour-
ces of ROS, such as uncoupled nitric oxide (NO) synthase
and mitochondria (6). In experimental hypertension, ath-
erosclerosis, and diabetes, the NOX enzymes are activated
to contribute to vascular dysfunction. Mice lacking com-
ponents of the NOXs are protected against hypertension
and when crossed to the apoE2/2 background have re-
duced atherosclerotic lesion formation (7,8).

In the current study, we tested the hypothesis that
excessive vascular ROS produced by the NOX enzymes
play a causal role in obesity by promoting inflammation,
adipogenesis, and exercise intolerance. To perform these
studies, we used mice that we previously generated in which
the NOX subunit p22phox is overexpressed in smooth
muscle cells (tgsm/p22phox) (9). As a docking subunit for all
NOX proteins in rodents, p22phox stabilizes these proteins
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and is essential for their function. Tgsm/p22phox mice have
increased vascular smooth muscle NOX1 (9) and increased
vascular superoxide and hydrogen peroxide production at
baseline. When given angiotensin II, these animals develop
augmented hypertension (10). We found that tgsm/p22phox

mice develop marked obesity, insulin resistance, leptin
resistance, and parameters of metabolic syndrome upon
high-fat feeding. These mice also had impaired spontane-
ous activity and skeletal muscle mitochondrial dysfunction.
Studies of mice lacking p22phox in vascular smooth muscle
confirmed a role of this protein in modulation of weight
gain. Taken together, these studies identify a previously
unidentified role for vascular ROS as a causal factor for
obesity and its associated metabolic consequences.

RESULTS

Augmented Obesity, Leptin Resistance, and
Adipogenesis in High-Fat Diet–Fed Tgsm/p22phox Mice
High-fat feeding induced a significantly greater increase in
body weight in tgsm/p22phox mice compared with wild-type
(WT) controls (Fig. 1A–B). The composition of the high-
fat diet is provided in Supplementary Table 1. As shown
in Supplementary Table 2, resting levels of body weight,
food intake, water intake, energy intake, leptin, choles-
terol, insulin, and glucose were not different among all
groups. Figure 1A illustrates the appearance of represen-
tative WT or tgsm/p22phox mice fed a normal or high-fat
diet for 6 weeks. Whereas body weight of 6-month-old
WT mice increased from 30.81 6 0.71 g to 37.89 6
1.16 g after high-fat feeding for 6 weeks, body weight
of tgsm/p22phox mice increased from 32.16 6 2.34 g to
43.03 6 1.44 g (Fig. 1B). The percentage of body weight
increase was 34% vs. 23% for tgsm/p22phox vs. WT mice,
indicating 50% more weight gain in the tgsm/p22phox ani-
mals. Of note, the augmented weight gain in tgsm/p22phox

mice was accompanied by increased abdominal white fat
(Fig. 1C) and liver size (Fig. 1D). There were no noticeable
increases in intake of water, food, or calculated energy in
tgsm/p22phox mice compared with WT controls when fed
high-fat diet (Fig. 2A–C). Although water intake was tran-
siently reduced in tgsm/p22phox mice at 3 weeks of high-fat
feeding, it did not affect energy intake.

In a subgroup of animals, nuclear magnetic resonance
(NMR) analysis of tissue subtype revealed that tgsm/p22phox

mice had slightly greater skeletal muscle mass than the WT
mice at baseline, and this did not change in either group
with fat feeding (Fig. 3C). In contrast, adipose tissue mass
markedly increased in the tgsm/p22phox mice compared with
the WT mice (Fig. 3B), corresponding to increased body
weight, as assessed by NMR as well (Fig. 3A).

Plasma leptin levels were markedly elevated in high-fat
diet–fed tgsm/p22phox mice compared with those of WT mice
(Fig. 4A). Given that leptin is a key adipocyte-derived hor-
mone in controlling body weight and energy balance via
regulation of food intake, the parallel increase in body
weight and plasma leptin levels seems to indicate a leptin-
resistant phenotype. Although total cholesterol levels were

similar between the groups (Fig. 4B), HDL cholesterol was
significantly reduced in high-fat diet–fed tgsm/p22phox mice
(Fig. 4C) (66.47 mg/dL 6 19.35 mg/dL to 64.05 mg/dL 6
11.34 mg/dL for WT vs. 88.87 6 31.06 to 27.18 6 1.92
mg/dL for tgsm/p22phox respectively). Of note, even at base-
line, the 6-month-old tgsm/p22phox mice had modestly in-
creased body weight compared with age-matched WT
controls (33.91 6 0.96 g vs. 30.34 6 0.58 g for tgsm/p22phox

vs. WT, n = 25, P , 0.05). This was not noted before, but
the animals studied previously were 6 weeks old (9). In
addition, circulating level of monocyte chemoattractant pro-
tein (MCP)-1, a marker of inflammation that is often elevated
in obesity, was significantly increased in high-fat diet–fed
tgsm/p22phox mice (Fig. 4D), which is positively correlated
with leptin level (Fig. 4E).

Insulin Resistance and Augmented Glucose
Intolerance in High-Fat Diet–Fed Tgsm/p22phox Mice
High-fat feeding slightly increased fasting plasma glucose
levels in both WT and tgsm/p22phox mice (Fig. 5A). However,
plasma insulin levels were elevated in a time-dependent
manner in high-fat diet–fed tgsm/p22phox mice (Fig. 5B).
As is obvious in Fig. 5A and B, tgsm/p22phox mice devel-
oped glucose intolerance as assessed by glucose tolerance
tests. Glucose intolerance was observed in high-fat diet–
fed tgsm/p22phox mice at week 3 (Fig. 6A), and this was
significantly aggravated by high-fat feeding at week 5 in
tgsm/p22phox mice (Fig. 6B).

Reduced Spontaneous Activity in High-Fat Diet–Fed
Tgsm/p22phox Mice
Because tgsm/p22phox and WT mice had similar energy in-
take during high-fat feeding, we considered the possibility
that excessive weight gain in tgsm/p22phox mice is due to
alterations in energy utilization. To examine this, we
monitored nocturnal spontaneous activity using a video
monitoring system. As shown in Fig. 7A, the spontaneous
activity was similar between tgsm/p22phox and WT mice
before high-fat feeding. Whereas high-fat feeding did
not change spontaneous activity in WT mice, it induced
a significant and graduate decline in spontaneous activity
in high-fat diet–fed tgsm/p22phox animals.

Mitochondrial Dysfunction and ROS Production in
Skeletal Muscle of High-Fat Diet–Fed Tgsm/p22phox Mice
Mitochondrial function is critical for skeletal myocyte
ATP supply. We have previously shown that ROS produced
by the NOX enzymes can impair mitochondrial function and
therefore considered the hypothesis that ROS produced by
the vascular NOXmight affect skeletal muscle mitochondrial
function (11,12). Interestingly, high-fat feeding induced
a near threefold increase in mitochondrial superoxide pro-
duction in tgsm/p22phox mice (Fig. 7B), which was accompa-
nied with markedly impaired mitochondrial function as
assessed by calcium-induced swelling assay (Fig. 7C).

Prevention of High Fat–Induced Obesity and Leptin
Resistance in p22phox VSMC Conditional KO Mice
For further examination of the role of vascular ROS in
the development of obesity and leptin resistance, VSMC
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p22phox conditional KO mice were made using a Cre-
LoxP approach (p22phoxloxp/loxp/tgsmmhc/cre). As is obvi-
ous in Fig. 8A, activation of Cre recombinase by tamoxifen
injection decreased p22phox protein expression. Importantly,

the weight gain caused by fat feeding was virtually absent
in mice lacking vascular p22phox (Fig. 8B). Plasma leptin
levels were markedly attenuated in these animals in re-
sponse to a high-fat diet (Fig. 8C). In contrast, leptin

Figure 1—Augmented obesity in high-fat diet–fed tgsm/p22phox mice. A: Representative mice fromWT and tgsm/p22phox groups fed with high-
fat diet for 6 weeks. B: Body weight gain in WT and tgsm/p22phox mice fed with control or high-fat diet for 6 weeks. C: White fat mass. D: Liver
weight in WT and tgsm/p22phox mice fed with control or high-fat diet for 6 weeks. Data are presented as mean 6 SEM; n = 10–14 for A–D.
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levels were elevated in WT animals treated with corn oil
as a control.

Prevention of High Fat–Induced Perivascular
Inflammation in p22phox VSMC Conditional KO Mice
In addition to enhanced adipogenesis and exercise in-
tolerance, vascular ROS might induce obesity by augment-
ing inflammation in perivascular fat tissues. This process
has previously been shown to mediate vascular dysfunc-
tion in hypertension (13–15). Therefore, we analyzed

leukocytes and T-cell subpopulations in perivascular fat
of high-fat diet–fed p22phoxloxp/loxp/tgsmmhc/cre mice. As
is obvious in Fig. 9, both leukocyte and T-cell subtypes
were markedly reduced in the perivascular tissues of high-
fat diet–fed p22phoxloxp/loxp/tgsmmhc/cre mice.

DISCUSSION

The most significant finding of the current study is that
vascular ROS play an important role in the development

Figure 2—Changes in water intake, food intake, and energy intake in WT and tgsm/p22phox mice fed with control or high-fat diet for 6 weeks.
A: Water intake was measured weekly, and there were no significant changes among the four different groups except for weeks 3–5.
B: Weekly food intake was decreased in WT mice after high-fat feeding for 2 weeks. C: Energy intake was calculated into kilocalories from
grams of food ingested as described in RESEARCH DESIGN AND METHODS. Data are presented as mean 6 SEM; n = 7–11 for A–C.
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of obesity and metabolic syndrome as characterized by
dyslipidemia, leptin resistance, inflammation, insulin resis-
tance, and glucose intolerance. High-fat feeding of genetically
altered mice with elevated vascular ROS resulted in exagger-
ated obesity and a phenotype characteristic of the metabolic
syndrome. Notably, this phenotype is associated with in-
creased fat mass, impaired spontaneous activity, and skeletal

muscle mitochondrial dysfunction, as well as enhanced
inflammation of perivascular fat. Additional experiments
demonstrated that these phenotypes were attenuated in
mice lacking vascular p22phox.

Epidemiologically, obesity is commonly associated with
diseases like hypertension, hypercholesterolemia, and
diabetes (16). Moreover, experimental studies have shown

Figure 3—NMR analysis of body weight, fat mass, and muscle mass in WT and tgsm/p22phox mice fed with control or high-fat diet for
6 weeks. A: Body weight was measured weekly. High-fat diet feeding induced an exaggerated body weight gain in tgsm/p22phox mice.
B: Total fat mass was measured weekly and found to be substantially more increased by high-fat diet feeding in tgsm/p22phox mice. C: Total
muscle mass was monitored weekly and found not to be different either at baseline or at 6 weeks after high-fat diet feeding between WT
and tgsm/p22phox mice. Data are presented as mean 6 SEM; n = 5 for A–C.
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Figure 4—Leptin resistance and dyslipidemia in high-fat diet–fed tgsm/p22phox mice. A: Plasma leptin levels were measured weekly as
described in RESEARCH DESIGN ANDMETHODS. A remarkable increase in plasma leptin levels was observed in high-fat diet–fed tgsm/p22phox mice,
while it did not occur in the WT mice fed with a high-fat diet. These data implicate a leptin resistance phenotype. B: Total cholesterol levels
were increased in both WT and tgsm/p22phox mice fed with high-fat diet. C: High-fat diet feeding induced a significant reduction in HDL
cholesterol in tgsm/p22phox mice. D: Plasma MCP-1 levels at 6 weeks of high-fat feeding were markedly increased in tgsm/p22phox mice. Data
are presented as mean 6 SEM; n = 7–11 for A–C, n = 6–7 for D). E: Plasma MCP-1 levels were positively correlated with plasma leptin
levels (n = 27 of 4 groups).
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that these diseases promote vascular ROS production
(17). It has been thought that obesity is often causal in
these conditions (18–20). However, our present study
suggests that vascular ROS overproduction might instead
precede and predispose to the development of obesity
and metabolic syndrome. Fat feeding induced greater
weight gain, glucose intolerance, and leptin intolerance
in tgsm/p22phox mice than in WT mice. It is important
to note that these animals had ingested a similar amount
of calculated energy, implicating that weight gain was
not caused by increased appetite or energy intake. In
additional experiments, we found that these animals
had reduced spontaneous activity and skeletal muscle
mitochondrial dysfunction, implicating reduced energy
expenditure.

Many obese patients habitually consume a high-fat
diet. Our data suggest that coexisting conditions associ-
ated with increased vascular ROS production, such as
hypertension or hypercholesterolemia, might serve as
a second stimulus in addition to dietary indiscretion,
together contributing to development of obesity and
metabolic syndrome. Intriguingly, plasma leptin levels

were markedly increased in fat-fed tgsm/p22phox mice,
while the body weight was still much elevated. These
data establish an important role of vascular ROS in in-
ducing leptin resistance. In normal conditions, insulin
stimulates leptin secretion from adipocytes, which in
turn inhibits insulin synthesis and secretion from pancre-
atic b-cells. In leptin resistance, however, this regulation
is disrupted, creating a feed-forward cycle leading to fur-
ther weight gain (21). In fat-fed tgsm/p22phox mice, leptin
resistance occurred 2 weeks after initiation of the high-fat
diet, and this was followed by the development of glucose
intolerance at 3 weeks of fat feeding, implicating a delete-
rious contribution of vascular ROS to the axis of leptin-
insulin regulation.

The impaired spontaneous activity in the fat-fed
tgsm/p22phox mice is linked to increased ROS production
in the skeletal muscle. Yokota et al. (22) described ex-
ercise intolerance and mitochondrial complex I and II
deficiencies in fat feeding–induced diabetes, which were
improved by administration of apocynin, an inhibitor of
flavin-containing oxidases. These findings suggest a role
of ROS in regulating skeletal muscle mitochondrial

Figure 5—Insulin resistance in high-fat diet–fed tgsm/p22phox mice. A: Fasting glucose levels were measured weekly over 6 weeks. Changes
from baseline were presented. B: Weekly circulating insulin levels were determined by ELISA. Insulin levels were elevated in a time-
dependent manner in high-fat diet–fed tgsm/p22phox mice. Data are presented as mean 6 SEM; n = 7–11 for A and B.
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function and exercise capacity (23). Prior studies from
our group and others have shown that ROS generated by
the NOX enzymes can diffuse to the mitochondria to
stimulate ROS production. Based on this concept of
ROS-dependent ROS production (24), we hypothesize
that vascular ROS is capable of diffusing to adjacent
skeletal muscle cells to activate ROS in these cells. Re-
cently, it was also found that angiotensin II–induced
oxidative stress in skeletal muscle limits exercise capac-
ity while inducing skeletal muscle mitochondrial dys-
function, both of which were attenuated by apocynin
administration (25). Consistent with this, mice deficient
in Mn-SOD developed severe exercise disturbance (26).
In the current study, we found that Mn-SOD inhabitable
superoxide is substantially increased in the skeletal mus-
cle of tgsm/p22phox mice. Taken together, vascular oxida-
tive stress may induce skeletal muscle dysfunction via
1) activation of skeletal muscle ROS production and
2) perturbation of perfusion to skeletal muscle due to
ROS scavenging of the vasodilatation factor NO.

Our data also suggest a possible role of inflammation in
the modulation of obesity. We found a significant increase
in T cells in the mesenteric fat of fat-fed WT mice, and
this was prevented in mice lacking the vascular NADPH
oxidase. A similar infiltration of T cells to perivascular ad-
ipose tissue occurs in angiotensin II–infused mice (13–15).

It has been suggested that perivascular adipose tissue
functions as an endocrine organ, releasing bioactive fac-
tors that regulate vascular function (27). It has been un-
clear as to whether inflammation of the perivascular
adipose tissue contributes to obesity. Our data indicate
that in mice deficient in vascular ROS production, T-cell
infiltration of perivascular adipose tissue is markedly re-
duced, likely contributing to the reduction in obesity ob-
served in these animals. Conversely, elevated MCP-1 was
found in high-fat diet–fed tgsm/p22phox, which correlated
well with an elevation in leptin levels. Given that MCP-1
expression is upregulated in obese patients and that
MCP-1 is inducible by leptin (28) or high glucose (29) via
an ROS-dependent pathway, our data further demonstrate
that vascular ROS may contribute to the development of
obesity via regulation of inflammation.

In conclusion, our present study for the first time
defines an important causal role of vascular oxidative
stress in development of obesity and metabolic syndrome,
likely due to exercise intolerance, vascular inflammation,
and augmented adipogenesis. These findings may be para-
digm shifting in revealing that vascular oxidative stress
can be a cause, rather than a mere consequence, of obesity
and metabolic syndrome. Thus, targeting vascular dysfunc-
tion and oxidative stress might prove to be an effective
approach to prevent and/or treat obesity.

Figure 6—Impaired glucose tolerance in high-fat diet–fed tgsm/p22phox mice. Intraperitoneal glucose tolerance test was performed at weeks
3 and 5. A: Glucose intolerance was observed in high-fat diet–fed tgsm/p22phox mice at week 3. B: Glucose intolerance was aggravated by
high-fat feeding at week 5 in tgsm/p22phox mice. Data are presented as mean 6 SEM; n = 7–11 for A and B.
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RESEARCH DESIGN AND METHODS

Animals and Experimental Model
Male C57BL/6 mice (6 months old) were purchased
from Charles River Laboratories (Hollister, CA) to serve
as WT control. Age-matched mice overexpressing p22phox
in smooth muscle (tgp22smc) have previously been de-
scribed (30) and were bred in-house at the University
of California, Los Angeles, and Vanderbilt University.
The p22phoxloxp/loxp/tgsmmhc/cre mice were bred at Van-
derbilt University. The transgenic mice with tamoxifen-
inducible Cre recombinase driven by the smooth muscle
myosin heavy chain (tgsmmhc/cre mice) were generous
gifts from Dr. Stephan Offermanns, University of Hei-
delberg, and were crossed with mice containing loxP
sites flanking the coding region of p22phox as previously
described (31). For Cre-inducible deletion of p22phox in
the vascular smooth muscle, p22phoxloxp/loxp/tgsmmhc/cre

mice received tamoxifen injections (3 mg/20 g i.p., every
other day for 10 days) prior to high-fat diet feeding for
6 weeks.

Animals were maintained in a temperature-controlled
environment (22°C) on a 12-h light-dark cycle. Mice were

randomly divided into two dietary groups and were fed
either a high-fat diet (42% fat; Harlan Laboratories, Mad-
ison, WI) or a standard diet for 6 weeks (Supplementary
Table 1). Mice were provided with 200 g food and 400 mL
water, and their weekly intake was monitored. Energy
intake, calculated as kilocalories per gram of food, was
3.1 kcal/g for the control diet and 4.5 kcal/g for the
high-fat diet, based on information provided by the sup-
plier. Activity was monitored using infrared webcams for
8 weeks and analyzed using motion-detection software.
The institutional animal care and use committees at Uni-
versity of California, Los Angeles, and Vanderbilt ap-
proved all experimental procedures.

Analysis of Fasting Glucose, Insulin, Leptin, MCP-1,
and Lipids
Blood glucose was determined at baseline and weekly
thereafter using the OneTouch Ultra blood glucose meter
(LifeScan). Plasma insulin levels were analyzed using an
ELISA for rat insulin (Ultra Sensitive Rat Insulin ELISA;
Crystal Chem). Plasma leptin levels were determined
using a mouse leptin ELISA kit (Crystal Chem). Quanti-
tative determination of mouse MCP-1 levels in plasma

Figure 7—Decreased spontaneous activity accompanied by mitochondrial dysfunction in skeletal muscle of high-fat–fed tgsm/p22phox mice.
A: Spontaneous activity was monitored over 8 weeks of high-fat diet feeding and progressively declined in the tgsm/p22phox mice while
remaining constant in the WT mice. B: Mitochondrial fraction from skeletal muscle was prepared as described in RESEARCH DESIGN AND

METHODS and subjected to superoxide detection using electron spin resonance. Mitochondrial superoxide production from high-fat diet–
fed tgsm/p22phox mice was increased more than threefold compared with WT controls fed high-fat diet. C: Calcium-induced swelling of
skeletal muscle mitochondria was significantly augmented in high-fat diet–fed tgsm/p22phox mice compared with WT controls fed high-fat
diet. n = 11–13. Data are presented as mean 6 SEM.
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was performed by using an ELISA kit (R&D Systems).
Plasma cholesterol was determined using a cholesterol re-
agent colorimetric assay kit (Roche Diagnostics). For de-
termination of plasma HDL cholesterol levels, plasma was
incubated with an HDL cholesterol precipitating reagent
(Pointe Scientific, Canton, MI) followed by separation of
HDL by centrifugation (2,000g, 10 min). HDL was then
quantified using an enzymatic cholesterol detection kit
(Roche Diagnostics).

Glucose Tolerance Test
After an 8-h fast, mice were injected with glucose (2 g/kg
body wt i.p. in 0.9% saline). Whole-blood samples were
collected from the tail vein at baseline and 15, 30, 60, and
120 min after glucose injection.

Mitochondrial Swelling Assay
Mitochondria from skeletal muscle were isolated by dif-
ferential centrifugation as previously described (32). Freshly
isolated mitochondria were incubated with a buffer contain-
ing 250 mmol/L sucrose, 10 mmol/L Tris (pH 7.4), and
5 mmol/L succinate for 1 min at room temperature before
swelling was initiated by the addition of 250 mmol/L CaCl2.
Mitochondrial swelling was measured by monitoring the de-
crease in absorbance at 540 nm.

Electron Spin Resonance Measurement of
Mitochondrial Superoxide Production
Freshly isolated skeletal muscle tissues were grounded
with 3 vol mitochondrial isolation buffer I (250 mmol/L
sucrose, 10 mmol/L HEPES, 10 mmol/L Tris, 1 mmol/L
EGTA, pH 7.4) in a glass tissue grinder by 15 strokes.

Homogenates were centrifuged at 800g for 7 min at 4°C.
Supernatants were further centrifuged at 4,000g for 15
min at 4°C. Pellet containing mitochondria was rinsed by
resuspension with mitochondrial isolation buffer II (250
mmol/L sucrose, 10 mmol/L HEPES, 10 mmol/L Tris, pH
7.4) and centrifugation at 4,000g for 15 min. After cen-
trifugation, pellet was resuspended with 100 mL mitochon-
drial isolation buffer II and then used for superoxide
measurement. Freshly prepared mitochondrial fraction of
skeletal muscle was incubated with spin trap solution in
the presence and absence of 100 units/mL Mn-SOD for
5 min prior to being loaded into glass capillary (Fisher
Scientific) for analysis of O2

c2 signal using e-scan electron
spin resonance spectrometer (Bruker) as we previously
published (33–38).

Isolation and Analysis of T-Cell Populations in
Perivascular Fat
Mesenteric vascular arcade with its attached perivascular
fat was isolated and digested with collagenase and hyal-
uronidase as previously described (13–15). The single-cell
suspensions were subjected to fluorescence-activated cell
sorter (FACS) for detection of CD45+ cells (total leuko-
cytes), CD3+ cells (T cells), CD4+ and CD8+ cells, and mac-
rophages (with CD11b and F4/80) in fat (13–15).

Statistical Analysis
Differences among different groups of means were com-
pared with ANOVA for multiple means with a Tukey
multiple comparison as a post hoc. For comparisons of
mean values among groups over time, two-way ANOVA

Figure 8—Prevention of obesity induction in p22phox knockout mice. p22phoxloxp/loxp crossed with mice expressing Cre recombinase
driven by the tamoxifen inducible smooth muscle myosin heavy chain promoter, Tgsmmhc/cre. A: Expression of p22phox was decreased
upon tamoxifen introduction. B: High-fat feeding for 6 weeks failed to induce body weight gain in p22phox knockout mice. n = 6. C: Leptin
level was attenuated in high-fat diet–fed p22phox knockout mice, while it was increased in vehicle corn oil–treated mice with high-fat diet
feeding or cre-negative mice. n = 5–6. Data are presented as mean 6 SEM.
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followed by Bonferroni posttest was performed. Before
data analysis, resting levels at baseline were subtracted
from the data by using the function of “remove baseline
and column math” of GraphPad Prism version 6.0 soft-
ware. The resting levels were presented in Supplementary
Table 2, while the analyzed data after subtraction were
presented in Figs. 1–5. Correlation between levels of lep-
tin and MCP-1 was assessed using Pearson correlation
analysis. Statistical significance was considered present
for P , 0.05. All data are presented as means 6 SEM.
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