1. Introduction

Aortic aneurysms are associated with high morbidity and mortality, accounting for more than 200,000 deaths each year worldwide [1]. In the United States, approximately 16,950 patients die of ruptured aneurysms annually [1]. Aneurysmal disease in humans has hereditary influence, particularly for thoracic aortic aneurysm (TAA) [2], although non-genetic factors also play important roles in aneurysm development and progression [3–6]. Hereditary thoracic aortic aneurysm and dissection (HTAAD) includes Marfan syndrome (MFS), Loey-Dietz syndrome and other HTAAD conditions. It has been established that fibrillin-1 (FBN1) mutation is the cause of aneurysm formation in patients with MFS [2]. Fibrillin-1 is the main component of 10 nm microfibrils and serves as a skeleton to provide anchoring and load-bearing functions within the arterial wall [7], deficiency of which impairs extracellular matrix (ECM) integrity leading to aneurysm formation [2]. Nonetheless, molecular mechanisms underlying TAA formation in MFS or other non-genetic conditions have remained incompletely understood.

TGFβ and its related pathways have been implicated in the...
Fig. 1. TGFβ blocking antibody recouples eNOS and attenuates ROS production via inhibition of NOX4 and restoration of DHFR expression in Fbn1^{C1039G}/⁺ mice. The aortas were isolated from 12 weeks old Fbn1^{+/+} and Fbn1^{C1039G/+} mice and subjected to Western blotting, immunohistochemistry (IHC) and electron spin resonance (ESR) analyses. (A) Representative Western blots and grouped densitometric data of aortic protein expression levels of inactive and mature TGFβ indicating upregulation of mature TGFβ in Fbn1^{C1039G/+} mice. Data are presented as Mean ± SEM, n = 5–9. (B) Representative Western blots and grouped densitometric data of aortic NOX4 protein expression indicating upregulation of NOX4 in Fbn1^{C1039G/+} mice. Data are presented as Mean ± SEM, n = 4. (C) Representative Western blots and grouped densitometric data of endothelial DHFR protein expression indicating downregulation of DHFR in Fbn1^{C1039G/+} mice. Data are presented as Mean ± SEM, n = 5. (D) Representative IHC images of aortic roots, indicating downregulation of endothelial DHFR in 12 weeks Fbn1^{C1039G/+} mice. Arrows indicating highly expressed DHFR in the endothelial layer of the control animals, which was however reduced in Fbn1^{C1039G/+} mice. In parallel experiments, 4 weeks old Fbn1^{C1039G/+} mice were treated with TGFβ blocking antibody for 4 weeks prior to analyses of NOX4 expression and eNOS uncoupling activity. (E) Representative Western blots and grouped densitometric data of aortic NOX4 protein expression in Fbn1^{C1039G/+} mice treated with TGFβ blocking antibody, indicating abrogated NOX4 expression. Data are presented as Mean ± SEM, n = 4. (F) Representative Western blots and grouped densitometric data of endothelial DHFR protein expression in Fbn1^{C1039G/+} mice treated with TGFβ blocking antibody, indicating restored DHFR expression. Data are presented as Mean ± SEM, n = 5. (G) Superoxide production was determined by ESR in the aortic tissues of Fbn1^{C1039G/+} mice after TGFβ blocking antibody treatment for 4 weeks. The results indicate that TGFβ blocking antibody reduced ROS production. Data are presented as Mean ± SEM, n = 5–7. (H) Total superoxide production in the presence or absence of L-NAME was determined by ESR in the aortic tissues of Fbn1^{C1039G/+} mice after TGFβ blocking antibody treatment for 4 weeks. The results indicate recoupling of eNOS by treatment with TGFβ blocking antibody. Data are presented as Mean ± SEM, n = 5. Bar = 30 μm, *p < 0.05, **p < 0.01.

Fig. 2. TGFβ blocking antibody attenuates aortic root expansion via inhibition of NOX4-uncoupled eNOS axis in Fbn1^{C1039G/+} mice. Four weeks old Fbn1^{C1039G/+} mice were treated with TGFβ blocking antibody for 4 weeks to analyze expansion of aortic roots and abdominal aortas. (A) Representative images of aortic root expansion detected by echocardiography. (B) Echo-defined areas of aortic root areas were attenuated by treatment with TGFβ blocking antibody for 3 or 4 weeks in Fbn1^{C1039G/+} mice. (C) Representative images of abdominal aorta expansion detected by echocardiography. (D) Echo-defined areas of abdominal aorta were yet changed after treatment with TGFβ blocking antibody for 4 weeks in Fbn1^{C1039G/+} mice, likely attributed to slower progression of AAA in Fbn1^{C1039G/+} mice. Data are presented as Mean ± SEM, n = 5. *p < 0.05.
pathogenesis of TAA formation in MFS [2]. However, the precise roles and mechanisms of TGFβ signaling in TAA formation have remained controversial [8–10]. TGFβ signaling and noncanonical (smad-independent) TGFβ signaling both drive aneurysm progression in Fbn1C1039G/+ strain [11,12], where NOX4 seems to function as a downstream effector [13,14]. However, in the more severe model of Marfan aneurysm (Fbn1mgR/mgR mice), TGFβ neutralization either exacerbated or mitigated TAA formation depending on whether treatment was initiated before or after aneurysm formation, respectively [15]; and that a potential role of NOX4 in this model has not been explored. In addition, even in Fbn1C1039G/+ strain, the molecular details downstream of NOX4 in the modulation of aneurysm formation, need to be further elucidated. Importantly, we have demonstrated a prominent role of NOX4 induced eNOS uncoupling to result in sustained oxidative stress, redox-sensitive activation of MMP2 and MMP9, and inflammatory responses of macrophage infiltration, resulting in matrix degradation and AAA formation [18–22]. Furthermore, we have shown that restoration of DHFR expression in the endothelium and recoupling of eNOS with oral administration of folic acid (FA) is remarkably effective in attenuating AAA formation in Ang II-infused hph-1 or apoE null mice [18–22]. Therefore, we tested the hypotheses that eNOS uncoupling is induced by TGFβ-NOX4 axis in MFS mice to result in endothelial dysfunction, sustained oxidative stress and cascaded events to stimulate matrix degradation and aneurysm formation in the aortic roots, and that targeting this novel signaling pathway with anti-TGFβ or FA diet is robustly effective in preventing Marfan aneurysms.

In the present study, we used the classical model of MFS, the fibrillin-1 mutant mice (Fbn1C1039G/+), to examine novel molecular mechanisms and therapeutics for TAA that are in urgent need for clinical management of the disease, since no oral medicine is available to treat this fatal and devastating disease except for surgical correction with considerable risk. Indeed, we identified a novel, feed-forward mechanism of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ axis in the development of TAA in MFS mice, targeting of which with anti-TGFβ or FA diet (via DHFR/H4B/eNOS recoupling/NO pathway) abrogates aneurysm formation. Notably, FA diet downregulated TGFβ and NOX4 protein expression, further inactivating the signaling axis that leads to aneurysm formation; and this response is NO-dependent. Correction of fibrillin is additionally beneficial in preserving the rate limiting H4B synthetic enzyme GTP cyclohydrolase 1 (GTPCH1) function to maintain eNOS coupling activity.
2. Methods

2.1. Animals

Animal experiments were performed according to the approval by the Institutional Animal Care and Usage committee at the University of California, Los Angeles (UCLA). The breeding founders of heterozygous Fbn1^{C1039G/+} male mice were purchased from Jackson Labs (Bar Harbor, ME, Strain B6.129-Fbn1_{tm1Hcd}/J, stock#012885). The animals develop proximal aortic aneurysms, mitral valve thickenings, pulmonary alveolar septation defects, mild thoracic kyphosis, and skeletal myopathy, but 90% reportedly live to one year of age [11]. The animals have been previously backcrossed into C57BL/6 background [11]. All pups were genotyped using PCR (Supplemental Fig. 1) following instructions from Jackson Labs. Since the incidence of thoracic aortic disease (including aneurysm and dissection) is higher in men than in women [23, 24], male mice have been used for experimentation.

2.2. In vivo and in vitro treatment with anti-TGFβ antibody

Four weeks old heterozygous Fbn1^{C1039G/+} male animals were treated with TGFβ neutralizing antibody (anti-TGFβ, clone 1D11, Bio X Cell) or isotype (IgG, clone MOPC21, Bio X Cell) as previously shown [25]. One mg anti-TGFβ or isotype reagent was injected intraperitoneally on the first day, and then 200 μg was injected intraperitoneally every other day for 13 times. The ultrasound imaging of aortic root and the abdominal aorta were performed every week as described below. Aortic superoxide production and eNOS uncoupling activity were determined after 4 weeks injection as described below.

For in vitro experiments, male origin human aortic endothelial cells (HAECs) were isolated from male donor after obtaining permission for research applications by informed consent (Lonza, Walkersville, MD, USA). HAECs were cultured in EGM-2 media (EBM-2 basal medium with supplement pack, all reagents from Lonza (Walkersville, MD, USA). Cells of passages 4 to 6 were starved in EBM-2 basal medium overnight and then treated with 20 μg/mL anti-TGFβ (clone 1D11, Bio X Cell, West Lebanon, NH, USA) or IgG (clone MOPC21, Bio X Cell) for 24 h, prior to determination of protein expression levels of GTPCH1 using Western blotting.

2.3. Isolation of endothelial cells from aorta

Endothelial cells (ECs) were isolated from aortas as we previously described [18,20–22,26]. In brief, freshly isolated aortas were cut into small sections (~2 mm) and digested in PBS containing collagenase (0.6 mg/mL) for 20 min at 37°C. The aortic rings were then gently shaken in the digestion buffer to remove ECs. The ECs were collected by centrifugation at 1,000 g for 3 min at 4°C. Both the denuded rings and ECs were lysed with lysis buffer for subsequent analyses.
2.4. Western blotting

Western blotting was performed following standard protocols, using 10–12.5% SDS/PAGE gel and nitrocellulose membranes. Primary antibodies and their dilutions used were: TGFβ (1:500, Abcam, ab92486), NOX4 (1:500, Novus Biologicals, NB110–58843), DHRF (1:500, Novus Biologicals, H00001719-M01), eNOS (1:2000, BD Transduction Laboratories, 610297), GTPCHI (1:400, Sigma-Aldrich, SAB1410516), Fibrillin (1:500, Invitrogen, MA5-12770), and β-actin (1:3000, Sigma-Aldrich, A2066). The intensities of protein bands were analyzed and quantified by the NIH Image J software.

2.5. Immunohistochemistry (IHC) staining

The aortas were embedded in optimal cutting temperature (OCT) compound, and then the frozen tissue sections were prepared with Cryostat Microm HM 525 (Thermo Scientific, Walldorf, Germany). Sections were warmed up at room temperature (RT), and incubated in PBST containing 0.1% Triton for 30 min. After incubated in 0.3% H2O2 in methanol for 30 min at RT, the sections were washed for 3 times with PBST. Sections were incubated with 5% normal goat serum for 2 h, followed by incubation with DHRF primary antibody (1:100, Novus Biologicals, H00001719-M01) at 4°C overnight. The sections were washed with PBST 3 times before and after being incubated with biotin conjugated anti-mouse secondary antibody (Vecta stain ABC kit, CA,
μ stained with hematoxylin and dehydrated in 95% and 100% alcohol, USA). The sections were then incubated in PBST containing reagent A and B (A:B:PBST = 3:3:94, Vecta stain ABC kit, CA, USA) for 2 h at RT. After incubation, the sections were washed 3 times and developed with Vecta stain ABC kit, CA, USA) for 2 h at RT. After drying, the sections were mounted with Permount (Fisher Scientific, Pittsburgh, PA, USA) and imaged using a Nikon Eclipse TE2000-U microscope.

2.6. Determination of superoxide production and eNOS uncoupling activity using electron spin resonance (ESR)

Aortic superoxide production was determined by electron spin resonance (ESR) as we previously described [18,19,21,22,26–35]. Briefly, freshly isolated aortas were homogenized on ice in lysis buffer containing 1:100 protease inhibitor cocktail, and centrifuged at 12,000 g for 15 min. Protein contents of the supernatants were determined using a protein assay kit (Bio-Rad, #500–0113, #500–0114, #500–0115). Five μg of protein was mixed with ice-cold and nitrogen bubbled Krebs/HEPES buffer containing diethyldithiocarbamic acid (5 μmol/L), deferoxamine (25 μmol/L), and the superoxide specific spin trap methoxyxycarbonyl-2,2,5,5-tetramethylpyrroloidine (CMH, 500 μmol/L, Axxora, San Diego, CA, USA). The mixture was then loaded into a glass capillary (Kimble, Dover, OH, USA), and assayed using the ESR spectrometer (eScan, Bruker, Billerica, MA, USA) for superoxide production. A second measurement was taken with the addition of PEG-SOD (100 U/mL). For assessment of eNOS uncoupling activity, a third measurement was made with the addition of l-NAME (100 μmol/L). The ESR settings used were: Center field, 3480; Sweep width, 9 G; microwave frequency, 9.78 GHz; microwave power, 21.02 mW; modulation amplitude, 2.47 G; 512 points of resolution; receiver gain, 1000.

2.7. Ultrasound imaging of aortic root and abdominal aorta

Animals were anesthetized with 1.5% isoflurane (Piramal Healthcare) at 2 L/min oxygen flow using a Isoflurane vaporizer (Tec 3 Isoflurane vaporizer), and secured onto a temperature controlled table to maintain temperature at 37 °C. Hair from the abdomen and the chest were removed with a hair removal cream (Nair). Preheated ultrasound transmission gel was applied to the chest (for the aortic root) or the abdomen (for the abdominal aorta). An ultrasound probe (Velvo 2100, echocardiograph, MS-400) was placed on the gel to visualize the aorta transversely. For the abdominal aorta, the aorta was first confirmed by the identification of pulsatile flow using Doppler measurements. Consistent localization for image acquisition was insured by imaging the area immediately superior to the branch of the left renal artery. For the aortic root, the aorta that is immediately superior to the heart was...
Fig. 7. Folic acid diet restores endothelial DHFR protein expression and activity in Fbn1^C1039G/+ mice. Fbn1^+/+ and Fbn1^C1039G/+ mice of 4 weeks age were treated with FA diet (15 mg/kg/day) for 4 and 8 weeks, after which Western blotting was used to examine endothelial DHFR and eNOS expression levels, while IHC was used to detect in situ DHFR protein expression. In parallel experiments, HPLC was used to determine DHFR activity in both isolated aortic endothelial cells (ECs) and the EC-denuded aortas. (A) Representative Western blots of endothelial DHFR and eNOS protein expression with β-actin serving as an internal control. (B) Grouped densitometric data of endothelial DHFR protein expression, indicating that FA diet upregulated endothelial DHFR protein abundance in both Fbn1^+/+ and Fbn1^C1039G/+ mice. Data are presented as Mean ± SEM, n = 4. (C) Grouped densitometric data of eNOS expression, indicating that FA diet decreased endothelial eNOS protein expression in both Fbn1^+/+ and Fbn1^C1039G/+ mice. When uncoupled, upregulation of eNOS represents a deteriorating response, which has been previously shown in apoE null mice and hph-1 mice where eNOS is modestly uncoupled at baseline. Hence, a reduction in eNOS while uncoupled is beneficial on the contrary. Data are presented as Mean ± SEM, n = 4. (D) Representative IHC images of aortic roots, indicating upregulation of DHFR protein abundance in 12 weeks Fbn1^C1039G/+ mice fed FA diet. Arrows indicate reduced DHFR expression in the endothelial layer which was however restored by oral FA administration. In parallel experiments, DHFR activity was determined from both isolated ECs. Data are presented as Mean ± SEM, n = 4. (E) and the EC-denuded aortas. Data are presented as Mean ± SEM, n = 4–8. (F), indicating increased activity in both fractions. However, only the endothelial DHFR activity is relevant to eNOS coupling/uncoupling activity. Bar = 30 μm. *p < 0.05, **p < 0.01, ***p < 0.001.

2.8. Oral administration of folic acid

The animals were treated with folic acid at 15 mg/kg/day as we previously published [18,19], using customized food of adding folic acid to standard chow used for control mice. For control mice, standard chow diet (5053-PicoLab Rodent Diet 20, LabDiet, St. Louis, MO) was supplied. FA diet was given to mice at 4 weeks of age, which lasted through the entire study period of 8 weeks till harvest (when mice were 12 weeks old).

2.9. H&E staining and Verhoeff-Van Gieson (VVG) staining

H&E staining was performed by the Translational Pathology Core Laboratory at UCLA following standard protocols. For VVG staining, paraffin embedded tissue sections were de-paraffinized by sequential washes in xylene (2×), descending alcohol from 100% to 50%, then into distilled water. Sections were then stained in Verhoeff’s solution for 70 min, followed by differentiation in 2% ferric chloride for 90 s. Sections were incubated with 5% sodium thiosulfate for 60 s, followed by counterstaining with Van Gieson’s solution and dehydration in 95% and 100% alcohol, and finally washed in xylene. After drying, the tissues were mounted with Permount (Fisher Scientific, Pittsburgh, PA, USA) and imaged using a Nikon Eclipse TE2000-U microscope.

2.10. Determination of nitric oxide (NO) bioavailability using ESR

Aortic NO bioavailability was determined by ESR as we previously described [18,19,21,22,26–29,31–33]. In brief, freshly isolated aortas were cut into 2 mm rings, and then incubated in freshly prepared NO specific spin trap Fe^2+ (DETC) (0.5 mmol/L) in nitrogen bubbled, modified Krebs-HEPES buffer at 37°C for 60 min, in the presence of calcium ionophore A23187 (10 μmol/L). The aortic rings were snap frozen in liquid nitrogen and loaded into a finger Dewar for measurement with ESR spectrophotometer (eScan, Bruker, Billerica, MA, USA). The instrument settings used were as the followings: Center field, 3,440; Sweep width, 100 G; microwave frequency, 9.796 GHz; microwave power 13.26 mW; modulation amplitude, 9.82 G; 512 points of resolution; and receiver gain 356.

2.11. Determination of tetrahydrobiopeterin (H4B) bioavailability using HPLC

Aortic and circulating levels of H4B were determined using HPLC as we previously described [18,19,21,22,26–29,31–33]. For determination of tissue H4B bioavailability, freshly isolated aortas were lysed in H4B lysis buffer (0.1 M phosphoric acid, 1 mM EDTA, 10 mM dl-dithiothreitol) and centrifuged at 12,000 g for 3 min at 4°C in the dark. For determination of circulating H4B bioavailability, equal volumes of plasma and H4B lysis buffer were mixed and incubated on ice for 20 min in the dark and then centrifuged at 12,000 g for 3 min at 4°C in the dark. The supernatant from both aortic and plasma preparations was subjected to oxidation in acidic (0.2 M trichloroacetic acid with 2.5% I2 and 10% KI) and alkaline solutions (0.1 M NaOH with 0.9% I2 and 1.5% KI). After centrifugation, 10 μl of the supernatant was injected into a HPLC system equipped with a fluorescent detector (Schimadzu America Inc, Carlsbad, CA, USA). Excitation and emission wavelengths of 350 nm and 450 nm were used to detect H4B and its oxidized species. H4B concentration was calculated according to a standard curve as we previously described [18,20,22,26].

2.12. Determination of DHFR activity using HPLC

DHFR activity was determined from isolated ECs or denuded aortic ring lysates as we previously described [19–22,26,29]. Briefly, lysates were incubated in a DHFR assay buffer (0.1 mol/L potassium phosphate
dibasic, 1 mmol/L DTT, 0.5 mmol/L KCl, 1 mmol/L EDTA, and 20 mmol/L sodium ascorbate at pH 7.4) containing NADPH (200 μmol/L) and the substrate dihydrofolate (50 μmol/L) at 37 °C for 20 min in the dark. The product of the reaction, tetrahydrofolate (THF), was measured using a HPLC system (Shimadzu America Inc., Carlsbad, CA, USA) with a C-18 column (Alltech, Deerfield, MA, USA) using water based mobile phase consisting of 7% acetonitrile and 5 mmol/L of potassium phosphate dibasic at pH 2.3. The signal was detected using a fluorescent detector at 295 nm excitation and 365 nm emission. The THF content was calculated against a standard curve prepared using THF solutions in assay buffer. Data are presented as nmol production of THF per min per mg protein.

2.13. In vitro treatment with folic acid and PTIO

Human aortic endothelial cells (HAECs, LONZA, as described above) were pretreated with NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (PTIO, 60 μmol/L) as previously described [30,34,35] 1 h before folic acid (50 μmol/L) treatment [29] for 24 h. The protein expression levels of TGFβ and NOX4 were subsequently determined using Western blotting analyses.

2.14. RNA interference with fibrillin 1 siRNA in the presence of anti-TGFβ

Human fibrillin 1 siRNA (siRNA ID: s502520) and negative control siRNA were purchased from ThermoFisher Scientific (Waltham, MA, USA). HAECs were grown in 6-well plates until 70–80% confluence. Then, siRNA transfection was performed using Lipofectamine 2000 reagent (Thermo Fisher Invitrogen, USA) following manufacturer’s instructions. After 24 h, anti-TGFβ (clone 1D11, Bio X Cell) or IgG (clone MOPC21, Bio X Cell) was added to the media and incubated for another 24 h. The cells were then harvested for Western blotting determination of GTPCHI protein expression.

2.15. Statistical analysis

All statistical analyses were performed using the Graphpad Prism software. All of the original data have been checked and found to distribute normally. Comparison between two groups was performed...
Fig. 9. TGFβ-dependent GTPCHI downregulation contributes to baseline deficiencies of H4B and eNOS uncoupling in Fbn1^{C1039G/+} animals. The aortas were isolated from 12 weeks old Fbn1^{+/+} and Fbn1^{C1039G/+} and subjected to Western blotting analysis to examine GTPCHI expression. (A) Representative Western blots and grouped densitometric data of aortic GTPCHI expression, indicating downregulation of GTPCHI in Fbn1^{C1039G/+} mice. Data are presented as Mean ± SEM, n = 4–6. In parallel experiments, human aortic endothelial cells (HAECs) were treated by TGFβ blocking antibody with or without fibrillin siRNA transfection, after which cells were lysed for determination of GTPCHI protein expression by Western blotting. (B) Representative Western blots and grouped densitometric data of GTPCHI protein expression, indicating restoration of GTPCHI protein abundance with TGFβ blocking antibody. Data are presented as Mean ± SEM, n = 5. (C) Representative Western blots and grouped densitometric data of Fibrillin expression, confirming efficacy in silencing fibrillin expression with fibrillin siRNA. Data are presented as Mean ± SEM, n = 5. (D) Representative Western blots and grouped densitometric data of GTPCHI protein expression, indicating downregulation of GTPCHI by fibrillin deficiency, which was reversed by TGFβ blocking antibody. Data are presented as Mean ± SEM, n = 5. *p < 0.05, ***p < 0.001.

Fig. 10. Targeting feed-forward signaling of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ axis with anti-TGFβ and folic acid attenuates formation of aortic aneurysms. Our data for the first time establish a novel feed-forward mechanism of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ axis in the development of TAA in MFS mice, targeting of which with anti-TGFβ or FA diet (via DHFR/H4B/eNOS recoupling/NO pathway) abrogates aneurysm formation in MFS mice. Notably, FA diet downregulated TGFβ and NOX4 protein expression, further disrupting the feed-forward loop to attenuate aneurysm formation. Correction of fibrillin is additionally beneficial in preserving GTPCHI protein abundance to maintain eNOS coupling activity.
3. Results

Anti-TGFβ attenuates aneurysm formation in Fig.1C1039G/+ animals via NOX4 inhibition, DHFR restoration, and recoupling of eNOS: Since the function of TGFβ signaling is controversial in TAA formation, we first examined protein expression of TGFβ and its downstream effector NOX4 in Fig.1C1039G/+ mice. As shown in Fig. 1A, protein expression of mature TGFβ, rather than that of the inactive form of TGFβ, was upregulated by two fold in 12 weeks old Fig.1C1039G/+ mice. The expression of NOX4 followed the same trend (Fig. 1B). Of note, the specificity of the NOX4 antibody was verified using NOX4 knockout mice (Supplemental Fig. 2), which were generous gifts of Dr. Junichi Sadoshima at the Rutgers University [36]. Our previous studies have shown that genetic deletion of NOX4 preserves DHFR protein abundance in the endothelium, resulting in recoupling of eNOS and attenuated AAA formation [21]. Similar to the AAA animals, endothelial specific DHFR expression was downregulated in Fig.1C1039G/+ mice (Fig. 1C) by ~40%, which is attributed to TGFβ/NOX4 activation (see below on anti-TGFβ restoration of DHFR protein abundance). IHC staining was used to further examine DHFR protein expression in situ in 12 weeks old Fig.1C1039G/+ mice. Of note, the expression of DHFR in the endothelial layer was markedly decreased in Fig.1C1039G/+ mice compared to Fig.1/+/+ mice (Fig. 1D), which is consistent with Western blotting results in Fig. 1C.

In order to examine the potential upstream role of TGFβ in NOX4 activation, DHFR deficiency and eNOS uncoupling, Fig.1C1039G/+ animals were treated with anti-TGFβ antibody in vivo. Of note, anti-TGFβ antibody significantly alleviated NOX4 protein upregulation (Fig. 1E), restored DHFR protein expression (Fig. 1F) and attenuated total ROS production (Fig. 1G) and ENOS uncoupling activity (Fig. 1H) in Fig.1C1039G/+ mice. These data indicate that TGFβ lies upstream of NOX4 activation, and consequent DHFR deficiency and ENOS uncoupling.

Furthermore, we explored whether anti-TGFβ can prevent the expansion of aortic root and abdominal aorta in Fig.1C1039G/+ mice. Ultrasound imaging was used to follow expansion of aortic roots and abdominal aortas in Fig.1C1039G/+ mice from 4 weeks old, which had been treated with IgG or anti-TGFβ for 4 weeks. The aortic root diameter was reduced after treatment with anti-TGFβ antibody for 3 or 4 weeks in Fig.1C1039G/+ mice (Fig. 2A and B), while there was yet significant difference in abdominal aorta diameter between anti-TGFβ and IgG treated group (Fig. 2C and D). We believe the latter is likely related to the relatively slower progression of AAA in Fig.1C1039G/+ mice.

Recoupling of ENOS with oral administration of folic acid attenuates expansion of aortic root and abdominal aorta in Fig.1C1039G/+ mice: We have previously shown that oral administration of FA attenuates AAA formation via recoupling ENOS in both novel and classical models of AAA including Ang II infused hph-1 mice and Ang II of FA attenuates AAA formation via recoupling eNOS in both novel and classical mouse models [18,19]. We next determined NO bioavailability in freshly isolated aortic segments from Fig.1/+/+ and Fig.1C1039G/+ mice with or without oral FA administration. The results, shown in Fig. 5B, indicate that NO bioavailability was markedly diminished in the aortas of Fig.1C1039G/+ mice compared to the Fig.1/+/+ mice at 8 and 12 weeks old, while FA diet restored NO bioavailability (Fig. 5B).

Oral FA administration is anticipated to recouple ENOS in vivo as we previously shown [18,19,29]. If ENOS is functional and coupled, it produces superoxide and the inhibition with l-NAME will reduce measured superoxide. Hence, the difference between the superoxide values measured with and without l-NAME reflects the coupling/uncoupling status of ENOS. As is obvious in Fig. 5C, l-NAME-sensitive superoxide production, reflective of ENOS uncoupling activity, was significantly increased in Fig.1C1039G/+ mice at 4, 8 and 12 week old, which was completely attenuated by FA diet. These results indicate that FA prevented aneurysm formation via recoupling of ENOS to shut down ENOS-derived superoxide production, sustained oxidative stress, and consequent matrix degradation, similar to what we have shown for AAA formation.

Folic acid diet restores tissue and circulating Hb levels in Fig.1C1039G/+ animals, and a biomarker role of circulating Hb for TAA: We and others have shown that uncoupling of ENOS is caused by a deficiency in HbB [16,17]. Therefore, aortic and plasma HbB bioavailability was determined by HPLC in Fig.1/+/+ and Fig.1C1039G/+ animals at 4, 8 and 12 weeks old. The results in Fig. 6A & 6B indicate that aortic and circulating HbB levels in Fig.1C1039G/+ mice were significantly reduced compared to that of Fig.1/+/+ mice starting from 4 weeks old, but fully restored with FA diet. We have previously shown that circulating HbB serves as a novel biomarker for AAA [37]. As shown in Fig. 6B, changes in circulating levels of HbB aligned well with that of tissue levels (Fig. 6A); and FA diet was able to restore both tissue and circulating HbB levels. Linear correlation between aortic and plasma HbB levels was calculated. As shown in Fig. 6C, circulating HbB levels accurately predicted tissue HbB levels. The reduced HbB levels also correlated well with increased aortic root diameters in Fig.1C1039G/+ animals (Fig. 6D & 6E). Besides, reduced HbB levels correlated well with increased abdominal aorta diameters in Fig.1C1039G/+ animals (Fig. 6F & 6G). These results indicate that HbB deficiency is involved in ENOS uncoupling-dependent aneurysm formation, which was reversed by oral FA administration. In addition, circulating HbB levels may be used clinically as a novel biomarker for the development and treatment response of TAA and AAA, which is quantitatively predictive of aneurysm sizes.

Folic acid diet upregulates endothelial DHFR protein expression and activity in Fig.1C1039G/+ mice: Data described above indicate that restoration of ENOS coupling activity following improved HbB

using the student’s t-test. Comparison among multiple groups was performed using ANOVA, followed by Newman-Keuls post-hoc test. Statistical significance was set at p < 0.05. All grouped data are presented as Mean ± SEM.
bioavailability mediates the protective effects of FA diet on TAA formation. Our previous studies have shown that oral FA administration recouples eNOS through augmentation of endothelial DHFR expression and activity [18,19,29]. Here, we examined endothelial DHFR expression and activity in Fbn1+C1039G/+ mice in response to oral FA administration. Endothelial cells (ECs) were isolated from freshly prepared aortas. As shown by the representative Western blots and grouped data (Fig. 7A-7B), endothelial specific expression of DHFR was significantly upregulated in both Fbn1-/- and Fbn1+C1039G/+ animals after FA treatment, while eNOS protein expression was downregulated (Fig. 7C). Furthermore, IHC staining confirmed upregulated DHFR expression in Fbn1+C1039G/+ mice fed FA diet (Fig. 7D). It should be pointed out that eNOS protein upregulation when uncoupled is a deteriorating response. Previous studies have shown that eNOS expression was upregulated in Ang II infused hph-1 mice and apoE null mice at baseline when eNOS is uncoupled [18,38]. Similar trend has also been observed in apoE null mice and DOCA-salt hypertensive mice [38,39]. As shown in Fig. 7E & 7F, DHFR activity in the isolated ECs and the denuded aortas of Fbn1+C1039G/+ mice were both increased by oral FA administration. Taken together, these data indicate that FA recoupling of eNOS to attenuate TAA formation was attributed to improvement in DHFR expression and activity in Fbn1+C1039G/+ mice.

Folic acid diet attenuates NOX4 and TGFβ expression in aortas of Fbn1+C1039G/+ mice: To examine whether there is a feed-forward activation of uncoupled eNOS on TGFβ/NOX4 that can be interrupted by FA diet, we examined aortic TGFβ and NOX4 protein expression in FA diet fed Fbn1+C1039G/+ mice and wild type controls. The protein expression of TGFβ (Fig. 8A) and NOX4 (Fig. 8B) were significantly decreased in Fbn1+C1039G/+ animals after oral FA administration. Therefore, there seems to be a feed-forward activation of eNOS uncoupling on TGFβ and NOX4, which would further sustain the TGFβ/NOX4/DHFR/eNOS uncoupling pathway to lead to prolonged oxidative stress and aneurysm formation. Since p22phox is the catalytic regulatory subunit of NOX4 and other NOX isoforms on the membrane [17], we also examined expression of p22phox in Fbn1+C1039G/+ mice. The expression of p22phox was not altered in Fbn1+C1039G/+ mice compared to Fbn1-/- mice; or by oral FA administration (Supplemental Fig. 3).

In additional experiments, HAECs were pretreated with 60 μmol/L PTIO 1 h before FA treatment to examine whether FA regulation of TGFβ and NOX4 is NO-dependent, consequent to folic acid recoupling of eNOS. The results revealed that FA attenuation of mature TGFβ and NOX4 expression was reversed by PTIO (Fig. 8C & D), indicating a NO dependency.

TGFβ-dependent GTPCHI downregulation contributes to baseline deficiencies of H2B and eNOS uncoupling in Fbn1+C1039G/+ animals: Since there is a baseline deficiency in H2B in 4 weeks old Fbn1+C1039G/+ mice while DHFR only became deficient at 8 weeks old, we examined a potential baseline deficiency in the rate limiting H2B synthetetic enzyme GTPCHI. The results indicate that GTPCHI protein abundance was significantly lower in Fbn1+C1039G/+ mice compared to the wild type mice (Fig. 9A). This response likely underlies reduced H2B bioavailability at baseline, whereas the beneficial effects of FA on improving H2B bioavailability to recouple eNOS is mediated by upregulation in DHFR expression and activity.

In order to examine a potential role of TGFβ in regulating GTPCHI expression in the presence of fibrillin deficiency, HAECs were treated with anti-TGFβ antibody in the presence or absence of fibrillin siRNA. The anti-TGFβ antibody treatment alone significantly upregulated GTPCHI protein abundance in HAECs (Fig. 9B). Furthermore, while fibrillin siRNA (significantly decreased Fibrillin protein expression, Fig. 9C) induced significant reduction in GTPCHI protein expression (Fig. 9D) that is similar with what we observed in vivo in Fbn1 mice (Fig. 9A), anti-TGFβ treatment preserved GTPCHI protein abundance under fibrillin siRNA transfection (Fig. 9D), indicating TGFβ-dependent downregulation of GTPCHI protein expression in the presence of fibrillin deficiency. Therefore, the deficiencies in H2B and eNOS coupling activity at baseline seem attributed to TGFβ-dependent downregulation of GTPCHI in Fbn1+C1039G/+ mice.

Taken together, our findings in the present study reveal a novel, feed-forward TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ signaling axis in mediating TAA formation in Fbn1+C1039G/+ mice. Antagonism of TGFβ signaling with anti-TGFβ in vivo or recoupling of eNOS with FA diet substantially attenuated aneurysm formation. FA further decreased NOX4 and TGFβ expression to shut down the feed-forward mechanism. Correction of fibrillin deficiency is additionally beneficial in preserving GTPCHI function to maintain eNOS coupling activity at baseline. These data elucidate novel mechanisms and therapeutics for TAA formation, which are highly translational in promoting development of anti-TGFβ and FA-based oral medicines for the treatment of aortic aneurysms.

4. Discussion

The most significant findings of the present study are the first demonstration of a novel feed-forward pathway of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ in TAA and AAA formation in Marfan mice, and the robust therapeutic potential for aortic aneurysm of TGFβ/NOX4 and eNOS recoupling by anti-TGFβ and FA diet in vivo (Fig. 10). The expression of mature/active TGFβ and its downstream effector NOX4 were upregulated while DHFR was downregulated in Fbn1+C1039G/+ mice. In vivo administration with anti-TGFβ attenuated aneurysm formation via inactivation of NOX4/DHFR deficiency/eNOS uncoupling pathway. Intriguingly, oral administration of FA attenuates echo defined expansion of aortic roots and abdominal aortas via restoration of endothelial DHFR function and H2B bioavailability, which recouples eNOS and restores NO bioavailability in Fbn1+C1039G/+ mice. Circulating levels of H2B are accurately reflective of aortic H2B levels, and that aerobic and circulating H2B levels are negatively correlated with diameters of aortic roots and abdominal aorta, indicating a novel biomarker role of circulating H2B for TAA and AAA. FA diet also attenuated TGFβ and NOX4 expression to further inactivate the feed-forward mechanism of the TGFβ/NOX4/DHFR/eNOS uncoupling axis to abrogate aneurysm formation in Fbn1+C1039G/+ mice.

The role of TGFβ signaling in TAA formation in different animal models is different or controversial [8–10]. Fbn1+C1039G/+ and Fbn1+C1039G/+ mice have been used to explore the function of TGFβ and its downstream pathways in TAA formation [12,15,40]. MFS mice with non-dissecting TAA (Fbn1+C1039G/+ mice) developed aneurysm as a result of overly produced TGFβ to activate phosphorylation and subsequent nuclear translocation of Smad2, which leads to disruption of elastic fiber [11]. Besides, noncanonical (smad-independent) TGFβ signaling was shown to drive aortic aneurysm formation in Fbn1+C1039G/+ mice [12]. Long-term treatment with doxycycline suppressed TGFβ upregulation, while inhibiting MMP-2 and MMP-9 activation to attenuate TAA formation in Fbn1+C1039G/+ mice [41]. On the other hand, in a more severe model (Fbn1+C1039G/+ mice), anti-TGFβ either exacerbated or attenuated TAA formation depending on whether treatment was initiated before (postnatal day 16; P16) or after (P45) aneurysm formation, respectively [15]. Xiong et al. found that doxycycline delays the manifestations of MFS, in part, through its ability to decrease active TGFβ and the noncanonical signaling cascade downstream of TGFβ in Fbn1+C1039G/+ mice [40]. In Ang II infused c57BL/6J mice, aortic rupture and aneurysm in both thoracic and abdominal regions is enhanced by TGFβ neutralization when initiated before pathogenesis [42]. In the present study, we identified a clear causal role of TGFβ signaling in activating a feed-forward mechanism of NOX4/DHFR/eNOS uncoupling to result in aneurysm formation in Fbn1+C1039G/+ mice. The upstream role of TGFβ is consistent with previous findings in this particular model of Marfan aneurysms [12]. Notably, we also found that FA is an effective therapeutic when initiated both before (AAA yet formed in 4 weeks old Fbn1+C1039G/+ mice) and after (TAA already started in 4 weeks old Fbn1+C1039G/+ mice) aneurysm formation. Besides, anti-TGFβ also proved to be an effective therapeutic to attenuate aneurysm progression started...
in 4 weeks old Fbn1(C1039G)/+ mice. NOX4 has been shown to lie downstream of TGFβ in aneurysm formation and progression in Fbn1(C1039G)/+ mice [14]. Knockout of NOX4 resulted in abrogated aortic root expansion in Fbn1(C1039G)/− mice [14]. In the present study we observed NOX4 upregulation in Fbn1(C1039G)/− mice, inhibition of which with anti-TGFβ attenuated eNOS uncoupling and aneurysm formation, indicating a novel upstream role of TGFβ/NOX4 in driving eNOS uncoupling-dependent aneurysm formation. Of note, the expression of p22phox was not changed in Fbn1(C1039G)/− mice compared to Fbn1(C1039G)/+ mice, indicating that TGFβ modulation of NOX4 activity in Fbn1(C1039G)/− mice was independent of any regulation in p22phox. Interestingly, using hph-1/NOX1, hph-1/NOX2 and hph-1/NOX4 double mutant mice, we have previously demonstrated roles of NOX isoforms in AAA formation in Ang II infused animals [21]. Among the three NOX isoforms, deletion of NOX4 in hph-1 mice is most robust in attenuating AAA formation. Furthermore, we have identified two novel mutations in human patients with AAA, which are associated with significant elevation in ROS production [21]. Taken together, these data demonstrate that NOX4 plays a critical role in the formation of aortic aneurysms including TAA and AAA under Marfan syndrome condition, or not.

The role of NOX4 in aneurysm formation is mediated by eNOS uncoupling. Activation of NOX leads to eNOS uncoupling and activation of other secondary oxidative systems [16,17]. We have previously shown that NOX activation-dependent deficiency in DHFR induces eNOS uncoupling in cultured endothelial cells, and in animals with hypertension, aortic aneurysms, diabetic vascular dysfunction and cardiac I/R injury [18,19,21,22,26–29,31,43]. We also clarified that NOX4 is the most effective target when inhibited, in attenuating AAA formation in hph-1 mice via recoupling eNOS [21]. Here, we observed upregulated NOX4 and eNOS uncoupling in Fbn1(C1039G)/− mice, while anti-TGFβ successful recoupled eNOS via downregulation of NOX4. These findings indicate that NOX4/eNOS uncoupling axis lies downstream of TGFβ activation to mediate TAA formation in Fbn1(C1039G)/− mice.

We have previously established a novel and important role of eNOS uncoupling in AAA formation, and demonstrated robust efficacy of oral FA administration in attenuating AAA formation in Ang II-infused hph-1 and apoe null mice [18,19]. Here we examined whether oxidative stress and uncoupled eNOS are responsible for TAA formation in Fbn1(C1039G)/− mice, and made a thorough inquiry if FA diet could be used as a potential oral medicine for TAA treatment. A correlation between oxidative stress and severity of TAA was previously documented [44]. Excessive production of ROS has been implicated as a pathogenetic mechanism in aortic aneurysm formation and other manifestations occurring in MFS [44,45]. In the present study we observed that eNOS was uncoupled in Fbn1(C1039G)/− mice to produce superoxide, and our data represent the first evidence that eNOS uncoupling serves as a primary source of ROS for TAA formation. Oral administration with FA is highly effective in recoupling eNOS to attenuate TAA and AAA formation in Fbn1(C1039G)/− mice. Our results show that FA completely restores eNOS coupling activity to improve NO bioavailability, resulting in abrogated expansion of aortic roots and abdominal aortas in Fbn1(C1039G)/− mice. These data demonstrate that FA diet could represent a novel therapeutic strategy for aneurysm formation in Fbn1(C1039G)/− mice, which may be broadly useful to treat TAA of alternative causes as well. Besides oxidative stress, hypertension is considered a risk factor and mechanism for aortic aneurysms [46]. Uncoupling of eNOS has been shown to occur in spontaneously hypertensive rats (SHR) [47], stroke-prone SHRs [48], Ang II induced hypertension [18] and hypertension induced with the DOCA [39,49]. We have previously demonstrated that FA treatment normalizes blood pressure in Ang II infused mice via restoration of eNOS coupling activity [18]. Therefore, we believe that FA has the potential to also particularly attenuate TAA formation in patients with co-existing hypertension.

Others and we have shown that Hb deficiency switches eNOS from the coupled to the uncoupled state [16–18,27–29,50–52]. In the present study we found that aortic and circulating Hb levels were significantly reduced in Fbn1(C1039G)/+ mice, which was accompanied by eNOS uncoupling activity. Our results further indicate that oral administration of FA restored Hb bioavailability in both aortic tissues and plasma, which was associated with abrogated eNOS uncoupling activity and attenuation of TAA formation in Fbn1(C1039G)/+ mice. Of note, aortic and plasma Hb levels were quantitatively correlated with sizes of aortic roots and abdominal aorta, with lower Hb levels corresponding to bigger aortic root and abdominal aortic dimensions. Therefore, our data for the first time demonstrate a novel biomarker role of circulating Hb for the formation of TAA and AAA that is quantitatively predictive of aneurysm sizes, which may be used clinically for monitoring of the disease progression and response to treatments.

We have previously shown that endothelial DHFR deficiency induces a reduction in Hb bioavailability and consequent eNOS uncoupling to result in development of cardiovascular diseases, including hypertension, aortic aneurysms, and diabetic vascular complications [18–22,26,29,31]. The endothelial expression and activity of DHFR were significantly upregulated in FA diet treated Fbn1(C1039G)/− mice, indicating a novel observation of DHFR-dependent attenuation of atherosclerosis formation. This is consistent to our previous findings in AAA where FA diet restoration of DHFR function is preventive of AAA formation [18,19,21]. It’s worth noting that there was a reduction in GTPCHI protein expression that seems to account for Hb deficiency in Fbn1(C1039G)/− animals at baseline. Furthermore, our in vitro study in HAECs demonstrated that GTPCHI is downstream of TGFβ in the presence of Fbn1 deficiency. Importantly, we also found that the expression of TGFβ and NOX4 were significantly attenuated by FA diet in Fbn1(C1039G)/+ animals, indicating efficacy of FA in disrupting the feed-forward loop of eNOS uncoupling-TGFβ to shut down the pathway responsible for aneurysm formation. Of note, this inhibitory effect of FA on TGFβ and NOX4 was found dependent on an intermediate role of NO that is produced from recoupled eNOS in response to FA treatment.

In summary, our data for the first time reveal a novel, feed-forward mechanism of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ signaling in mediating aneurysm formation in MFS mice. Targeting this pathway with anti-TGFβ or oral FA administration is robustly effective in attenuating both TAA and AAA formation. By recoupling eNOS to produce NO, FA further downregulates TGFβ/NOX4 expression to disrupt the feed-forward loop. Correction of fibrillin deficiency is additionally beneficial in preserving GTPCHI function to maintain eNOS coupling activity at baseline. These data reveal novel mechanisms and therapeutics for aneurysm formation, which are highly translational in promoting development of anti-TGFβ and FA-based oral medicines for the treatment of aortic aneurysms.

Funding

This study was supported by National Institute of Health National Heart, Lung and Blood Institute (NHLBI) Grants HLO77440 (HC), HLO88975 (HC), HL119968 (HC), HL142951 (HC), HL154754 (HC) and an American Heart Association Established Investigator Award (EIA) 12EIA8990025 (HC).

Declaration of competing interest

None declared.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2020.101757.
K. Huang et al.

References

