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We highly appreciate the quick responce from Mr. Karamat [1]. His letter provides a novel 

research area in regard to the relationship between creatine kinase (CK) and nitric oxide 

(NO), and his group have given some evidences that CK system is associated with blood 

pressure [2, 3]. However, our review mainly focused on the role of H4B deficiency in eNOS 

uncoupling in hypertension.

As we discussed in our review [4], H4B deficiency plays a key role in determining eNOS 

uncoupling-dependent hypertension, which really exists and has been confirmed by many 

independent groups including us [5–9]. Therefore, the enzymes involved in H4B 

biosynthesis, including de-novo synthetic pathway and salvage pathway, become 

significantly important for eNOS coupling states. In de novo synthetic pathway, H4B is 

formed from guanosine-5′-triphosphate (GTP), through a sequence of enzymatic steps 

carried out by GTP cyclohydrolase I (GTPCHI), 6-pyruvoyl tetrahydropterin synthase 

(PTPS) and sepiapterin reductase (SPR) [10]. In the salvage pathway, the exogenous pterin 

precursor sepiapterin is firstly metabolized by SPR to H2B, and further to H4B by 

dihydrofolate reductase (DHFR) [11]. In hyperphenylalaninemia (hph)-1 mice, which 

display 90% deficiency of GTPCHI, the intracellular levels of H4B as well as NO 

bioavailability are significantly lower in hph-1 mice than in WT mice [12]. In angiotensin II 

(Ang II)- infused mice, eNOS uncoupling contributes to high blood pressure, where aortic 

nitric oxide production was markedly decreased. The molecular mechanism involves a rapid 

and transient activation of endothelial NOX, subsequent H2O2-dependent down-regulation 

of DHFR, and persistent H4B deficiency [13]. Therefore, DHFR overexpression or folic acid 

restoration of DHFR function effectively recoupled eNOS to reduce blood pressure [5, 14]. 

Furthermore, SPR was lost in the endothelium of DOCA-salt-induced hypertensive mice, 

and combined treatment of H4B and a NOX inhibitor apocynin fully restored nitric oxide 

bioavailability. All these evidences emphasize the central role of H4B for maintaining eNOS 

coupling in hypertesnion.
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On the other hand, we can not deny the possible role of CK system in the development of 

hypertension. However, it is still unknown whether its effect on hypertension is through 

affecting NO production. Although creatine synthesis demands nearly 10 times the flux of 

plasma L-arginine represented by NO synthesis [1], the concentration of plasma L-arginine 

rarely falls below 60 mmol/l in pathological conditions, which is much higher than the 

amount need for eNOS (Km=3 mmol/l). In this way, ADMA is considered as a much more 

influencing factor than CK. Moreover, there are evidences that multiple pathways for L-

arginine uptake are present in vascular cells and L-arginine transport and NO formation are 

differentially controlled in these cells [15]. For example, the selective stimulation of L-

arginine uptake in BAECs shows that L-arginine transport is dissociated from NO generation 

in these cells [15]. Therefore, the concentration of plasma L-arginine seems not that 

important. In addition, high levels of NO are known to stimulate apoptosis [16], which 

should be accurately controlled by the organism.

In conclusion, our review paper is maily focused on a central role of H4B deficiency in 

eNOS uncoupling in hypertension. Based on the major regulatory mechanisms, preserving 

eNOS coupling activity will be considered as a novel therapeutics for the treatment of 

hypertension.
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