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The inner lumen of the blood vessels is covered by a thin
layer of cells, known as endothelial cells. The integrity of
endothelial cells is important for the development of the
cardiovascular system and for the protection against cardio-
vascular diseases. Endothelial cells have been reported to
possess the ability to transdifferentiate into mesenchymal
cells (endothelial-to-mesenchymal transition, EndMT) [1–3].
During the process of EndMT, endothelial cells lose their
specific cell surface markers of ve-Cadherin and CD31, and
instead express markers for mesenchymal or myofibroblastic
cells, such as α-SMA, type I collagen, and vimentin. In this
current issue of Trends in Cardiovascular Medicine, Jackson et al.
[4] reviewed the signaling mechanisms and the roles of
EndMT in cardiovascular development and cardiovascular
pathogenesis. Here, we emphasize and further discuss the
main pathways that have been implicated in both physiolo-
gical and pathological EndMT.
Accumulating evidence has demonstrated an intermediate

role of EndMT in the embryonic development of the cardio-
vascular system, as discussed by Jackson et al. [4]. The
authors described individual signaling pathways that have
been shown to induce EndMT. Among the relevant pathways,
the TGF-β/BMP and PI3K/Akt axis are particularly important,
and discussed here in more detail. Endocardial suppression of
TGF-β/BMP signaling by deletion of BMP receptors and Smad4,
or attenuation of active Samd2/3/4 complex, resulted in a
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decreased number of mesenchymal cells in the endocardial
cushion, and defective cushion formation in embryonic
mouse hearts [5–7]. Additionally, inhibition of PI3K or PDK1
(mediating PI3K-induced Akt activation), or knockout of Akt,
has been shown to induce impaired EndMT, defective forma-
tion of atrioventricular cushion, and subsequent septation
defects and valves thickening in mice [8–10]. These results
strongly suggest that TGF-β/BMP and PI3K/Akt mediated-
EndMT is indispensable to cardiovascular development at
the embryonic stage.
The review by Jackson et al. [4] primarily focuses on the

signaling mechanisms of EndMT. Nonetheless, the evolution
of the research field of EndMT is reflective of the intriguing
identification of a “good ones turn bad” role of EndMT. The
studies of EndMT were confined within embryonic develop-
ment until the first report by Arciniegas et al. [11] document-
ing that EndMT could be induced in adult bovine aortic
endothelial cells by TGF-β in vitro. As early as 5 days after
TGF-β treatment, up to 60% of the cells were positively
stained with α-SMA. Moreover, double-positive cells (both
with endothelial and mesenchymal markers, FVIII, and
α-SMA) were also identified, indicating the occurrence of
EndMT in mature endothelial cells [11]. Another study by
Frid et al. [12] provided rigorous evidence that bovine
aortic and main pulmonary arterial endothelial cells have
the potential to undergo endothelial to smooth muscle
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transdifferentiation in response to TGF-β. It was clearly
shown that mature endothelial cells possess the ability to
transit into smooth muscle cells that express smooth muscle
myosin heavy chains (SM-MHC) [12]. SM-MHC is the most
discriminating marker for contractile smooth muscle cells,
while α-SMA can also be detected in mesenchymal, myofi-
broblastic, or smooth muscle cells at early stage of differ-
entiation [13,14]. Until very recently, EndMT has emerged as a
mechanism involved in the pathological progression of multi-
ple cardiovascular diseases including cardiac fibrosis, pul-
monary arterial hypertension (PAH), atherosclerosis, heart
failure, diabetic retinopathy and cerebral cavernous malfor-
mations [15–17]. We will focus on the role of EndMT repre-
sentatively in cardiac fibrosis and PAH.
In a classical study by Zeisberg et al. [15] using an aortic

banding model, it was shown that increased TGF-β1 and its
downstream signaling-mediated EndMT contribute to the
progression of cardiac fibrosis. The attenuated cardiac fibrosis
in Smad3þ/� mice (downstream of TGF-β1) was accompanied
by repressed EndMT [15]. It is worth noting that TGF-β
signaling also mediates EndMT during embryonic develop-
ment of the heart as discussed above, which is perhaps silent
during adulthood unless triggered by a disease state. Of note,
the expression level of TGF-β is very low in normal heart [18].
The mechanism of TGF-β signaling activation to induce cardiac
fibrosis is not yet discussed in this review. The mechanism has
remained incompletely understood, although it may involve
increased expression of thrombospondin-1, a TGF-β activator
that could be induced by angiotensin II in cardiac endothelial
cells [19]. Another mechanism of elevating TGF-β levels may be
through Krüppel-like factors 6 (KLF6), knockout of which
decreased TGF-β expression and cardiac fibrosis through
thrombospondin-4 [20]. There is more evidence supporting a
role of PI3K/Akt signaling in cardiac fibrosis beyond what has
already been presented in the review by Jackson et al. [4]. In an
As2O3-induced cardiac fibrosis model, inhibition of PI3K with
LY294002 repressed As2O3-induced EndMT and fibrosis [21].
Application of LY294002 also attenuated high-glucose-induced
EndMT, which promotes fibrosis in diabetic hearts [22]. These
results demonstrate that TGF-β and PI3K/Akt signaling pathways
play important roles in EndMT-mediated cardiac fibrosis. Inhibi-
tion of these pathways might be beneficial in the prevention
and/or treatment of EndMT-mediated cardiac fibrosis.
As stated in the review by Jackson et al. [4], PAH is

associated with EndMT. EndMT-mediated endothelial dys-
function in PAH was initially observed by two independent
groups in 2015 [16,17]. It was reported that both endothelial
and mesenchymal cell markers can be detected in human
PAH intimal and plexiform lesions [17]. Using electron micro-
scopy, Ranchoux et al. [17] reported mixed ultrastructural
phenotype of pulmonary endothelial cells isolated from PAH
patients. These cells possess not only endothelial-specific
organelle Weibel–Palade body, but also smooth muscle cell
featured myofilaments. These results provided direct evi-
dence of ongoing dynamic process of EndMT in endothelial
cells in PAH. The other study by Good et al. [16] demonstrated
that mesenchymal-transited endothelial cells failed to
form an integral endothelial barrier and exhibited increased
permeability, which contributes to leukocyte infiltration,
a key feature of PAH. Interestingly, TGF-β, again, has been
delineated as a major inducer of EndMT in PAH [16]. A
deficiency in BMP receptor type 2 (BMPR2), a molecule that
counteracts TGF-β signaling, is known to induce EndMT and
subsequent vascular remodeling [17,23]. On the other hand,
PI3K/Akt-mediated EndMT also participates in the progres-
sion of PAH. It has been shown that global knockout of Akt1,
not Akt2, protected against hypoxia-induced pulmonary vas-
cular remodeling and PAH [24]. Transgene of PTEN, a repres-
sor of Akt activity, attenuated PAH in mice [24]. Of interest,
rapamycin, an inhibitor for mTOR (downstream of Akt), also
partially reversed EndMT process and reduced mean pulmon-
ary artery pressure [17]. While further investigations of
detailed mechanistic roles of EndMT in PAH are necessary,
these data suggest that TGF-β and PI3K/Akt signaling are
likely essential mediators of EndMT in PAH, and of related
features of vascular remodeling.
Though indispensable to physiological embryonic develop-

ment, emerging evidence appears to demonstrate a recogniz-
able pathological role of EndMT in the pathogenesis of
various cardiovascular diseases such as cardiac fibrosis and
PAH. Similar pathways of TGF-β and PI3K/Akt are involved in
both physiological and pathological EndMT. Given further
investigations, these pathways, as well as those discussed by
Jackson et al. [4], may prove to be novel targets to attenuate
EndMT to prevent and/or treat EndMT-dependent cardiovas-
cular disorders. Initially characterized as a physiological
mediator of cardiovascular development, EndMT has “gone
bad” during adulthood to mediate disease pathogenesis.
Continued efforts in delineating full details of signaling
mechanisms of EndMT and EndMT-dependent pathophysio-
logical consequences are important endeavors to reveal novel
therapeutic targets and options.
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