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Abstract—Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including
modulation of vasomotor tone. Inactivation of nitric oxide (NOz) by superoxide and other reactive oxygen species (ROS)
seems to occur in conditions such as hypertension, hypercholesterolemia, diabetes, and cigarette smoking. Loss of NOz

associated with these traditional risk factors may in part explain why they predispose to atherosclerosis. Among many
enzymatic systems that are capable of producing ROS, xanthine oxidase, NADH/NADPH oxidase, and uncoupled
endothelial nitric oxide synthase have been extensively studied in vascular cells. As the role of these various enzyme
sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and
ultimately correct endothelial dysfunction.(Circ Res. 2000;87:840-844.)
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Reactive oxygen species (ROS) are a family of molecules
including molecular oxygen and its derivatives produced in all

aerobic cells. Excessive production of ROS, outstripping endoge-
nous antioxidant defense mechanisms, has been implicated in
processes in which they oxidize biological macromolecules, such as
DNA, protein, carbohydrates, and lipids. This condition has com-
monly been referred to as oxidant stress. An increasing body of
evidence suggests that oxidant stress is involved in the pathogenesis
of many cardiovascular diseases, including hypercholesterolemia,
atherosclerosis, hypertension, diabetes, and heart failure. In this
review, mechanisms by which oxidant stress affects vascular func-
tion and ultimately contributes to vascular disease will be discussed.

Chemical Characteristics of Reactive
Oxygen Species

Many ROS possess unpaired electrons and thus are free
radicals. These include molecules such as superoxide anion

(O2
2z), hydroxyl racial (HOz), nitric oxide (NOz), and lipid

radicals. Other reactive oxygen species, such as hydrogen
peroxide (H2O2), peroxynitrite (ONOO2), and hypochlorous
acid (HOCl), are not free radicals per se but have oxidizing
effects that contribute to oxidant stress. The cellular produc-
tion of one ROS may lead to the production of several others
via radical chain reactions. For example, reactions between
radicals and polyunsaturated fatty acids within cell membrane
may result in a fatty acid peroxyl radical (R-COOz) that can
attack adjacent fatty acid side chains and initiate production
of other lipid radicals. Lipid radicals produced in this chain
reaction accumulate in the cell membrane and may have a
myriad of effects on cellular function, including leakage of
the plasmolemma and dysfunction of membrane-bound re-
ceptors. Of note, end products of lipid peroxidation, including
unsaturated aldehydes and other metabolites, have cytotoxic
and mutagenic properties.1
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Endothelial Dysfunction
The term endothelial dysfunction has been used to refer to
several pathological conditions, including altered anticoagu-
lant and anti-inflammatory properties of the endothelium,
impaired modulation of vascular growth, and dysregulation of
vascular remodeling.2 However, in much of the literature this
term has been used to refer to an impairment of endotheli-
um-dependent vasorelaxation caused by a loss of nitric oxide
(NOz) bioactivity in the vessel wall. Several human studies
have shown that traditional risk factors for atherosclerosis
predispose to endothelial dysfunction. This form of endothe-
lial dysfunction is not merely a laboratory curiosity. Impaired
endothelium-dependent vasodilation in the coronary circula-
tion of humans has profound prognostic implications in that it
predicts adverse cardiovascular events and long-term
outcome.3

A decline in NO bioavailability may be caused by de-
creased expression of the endothelial cell NO synthase
(eNOS),4 a lack of substrate or cofactors for eNOS,5 alter-
ations of cellular signaling such that eNOS is not appropri-
ately activated,6 and, finally, accelerated NOz degradation by
ROS.7

Even before it was known to be NOz, early studies showed
that the endothelium-derived relaxing factor (EDRF) could be
inactivated by O2

2z and stabilized by superoxide dismutase
(SOD).8 Now that EDRF is known to be nitric oxide, this
chemistry is much better understood. The interaction between
NOz and O2

2z occurs at an extremely rapid rate of 6.73109

mol/L21 z s21.9 This is 3 times faster than the reaction rate for
O2

2z with SOD. Given this rapid reaction rate, there is likely
always some O22z reacting with NOz within cells and in the
extracellular space. Under physiological conditions, endoge-
nous antioxidant defenses minimize this interaction and
maintain what seems to be a tenuous balance between O2

2z

and NOz.
This tenuous balance seems to be altered in a variety of

common disease states. One of the first examples of this came
from studies of hypercholesterolemic rabbits. These animals
have severely impaired endothelium-dependent vascular re-
laxation, suggesting a lack of NOz. Paradoxically, the produc-
tion of total nitrogen oxides (NOz and oxidation products of
NOz) was increased by as much as 3-fold in these vessels.
Furthermore, nitrogen oxide production increased appropri-
ately on stimulation with either acetylcholine or the calcium
ionophore A23187, suggesting that signaling pathways lead-
ing to eNOS activation were intact in these vessels.10 These
findings led to the speculation that hypercholesterolemia
could result in oxidation of NOz to vaso-inactive nitrogen
oxides (such as nitrite and nitrate). Subsequently, it was
shown that treatment of cholesterol-fed rabbits with polyeth-
ylene-glycolated–SOD could markedly enhance endotheli-
um-dependent vascular relaxation but have no effect in
normocholesterolemic animals.11 This observation strongly
supported the concept that in hypercholesterolemia, nitric
oxide bioavailability is reduced by O22z.

Subsequently, altered endothelium-dependent vascular re-
laxation has been associated with enhanced degradation of
NOz by ROS in animal models of many different diseases.
These include hypertension, diabetes, cigarette smoking, and

heart failure.12–15 These studies have been extended to hu-
mans. Antioxidant vitamins have been shown to enhance
endothelium-dependent vasodilation in both the coronary and
forearm circulations in subjects with many of the same
diseases examined in animal models.16–18

Superoxide is probably not the only radical that can react
with NOz. Lipid radicals (LOz and LOOz) can react with NOz

to form, respectively, LONO and LOONO.19 It is of interest
that oxidized LDL, but not native LDL, added to isolated
vessels inhibits endothelium-dependent vascular relaxation.20

The oxidation of LDL leads to production of linoleic hy-
droperoxy and alkoxy radicals that could participate in such
reactions with NOz. Recently, it has been shown that hydroxyl
radical may react with NOz.21

Sources of ROS in Vascular Cells
In mammalian cells, potential enzymatic sources of ROS
include the mitochondrial respiration, arachidonic acid path-
way enzymes lipoxygenase and cyclooxygenase, cytochrome
p450s, xanthine oxidase, NADH/NADPH oxidases, NO syn-
thase, peroxidases, and other hemoproteins. Although many
of these sources could potentially produce ROS that inacti-
vate NOz, 3 have been studied rather extensively in cardio-
vascular system. These include xanthine oxidase, NADH/
NADPH oxidase, and NO synthase. These will be discussed
separately below.

Xanthine Oxidase
The xanthine oxidoreductase is a molybdoenzyme capable of
catalyzing the oxidation of hypoxanthine and xanthine in the
process of purine metabolism. Xanthine oxidoreductase can
exist in two interconvertible forms, either as xanthine dehy-
drogenase or xanthine oxidase. The former reduces NAD1,
whereas the latter prefers molecular oxygen, leading to the
production of both O22z and H2O2. In endothelial cells, the
activity and expression of xanthine oxidase is enhanced by
interferon-g.22 The first suggestion that O22z derived from
xanthine oxidase might alter NOz bioavailability came from
studies of spontaneously hypertensive rats (SHRs). In these
animals, a recombinant form of SOD modified to bind to
heparin-binding sites dramatically lowered blood pressure but
had no effect on blood pressure in nonhypertensive rats. In
these same animals, the xanthine oxidase inhibitor oxypurinol
also lowered blood pressure, strongly suggesting that xan-
thine oxidase played a role in this process.23 There is also
evidence that free radical production is increased in the
microcirculation of SHRs and that this can be prevented by a
xanthine oxidase inhibitor.24 Previous studies have shown that
early stages of experimental atherosclerosis caused by diet-
induced hypercholesterolemia are associated with increased
O2

2z, presumably from xanthine oxidase, because O2
2z pro-

duction in this setting can be normalized by oxypurinol.25 In
humans with hypercholesterolemia, administration of oxy-
purinol, an inhibitor for xanthine oxidase–mediated O2

2z

production, improved impaired vasodilation in hypercholes-
terolemic patients.26

Recent work has shown that xanthine oxidase may exist in
a molybdenum-deficient form. In this state, the enzyme is
unable to use xanthine as a substrate and is not inhibited by
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oxypurinol but can use NADH as an electron donor to form
O2

2z.27 Using classical assays of homogenates of tissues, one
could easily conclude that such a form of xanthine oxidase is
an NADH oxidase (see below). There are some technical
difficulties for enabling additional studies of the enzyme. A
sufficiently sensitive assay of xanthine oxidase enzyme ac-
tivity that would permit identification of the enzyme in small
amounts of tissue has not been successfully developed. A
widely available specific antibody against the enzyme that
could facilitate studies of enzyme expression is also not
available. These problems have prevented an in-depth under-
standing of the role of xanthine oxidoreductase in endothelial
dysfunction.

NADH/NADPH Oxidase
In several studies, investigators have attempted to define the
source of ROS using homogenates of either vascular cells or
tissues. In such experiments, the relevant enzymes are char-
acterized on the basis of their substrate preference and, in
some cases, specific inhibitors. When homogenates of endo-
thelial and vascular smooth muscle cells have been studied in
this fashion, the predominant substrate capable of driving O2

2z

production has been NADH and, to a lesser extent, NADPH,
no matter what detection system has been used. In fact, in
these studies, there is little evidence that other enzyme
systems, such as xanthine oxidase, cyclooxygenase, or cyto-
chrome p450, serve as important sources of O2

2z. A caveat
with these studies is that the assay systems may not have been
optimum for demonstrating O22z production from some of
these other sources. Nevertheless, on the basis of such
studies, it has been proposed that the predominant
superoxide-producing enzyme is an NADH/NADPH oxidase.
The structure and function of these enzymes has been the
subject of recent reviews,28 including one in this series of
MiniReviews. Importantly, the activity of the vascular
NADH/NADPH oxidase is regulated by cytokines, hor-
mones, and mechanical forces that are known to be involved
in the pathogenesis of vascular disease. Stimulation of vas-
cular smooth muscle cells with angiotensin II, thrombin,
platelet-derived growth factor, tumor growth factor-a, and
lactosylceramide all increase activity of the vascular ROS
formation and NADH/NADPH oxidase activity.29–33 Expo-
sure of human umbilical endothelial cells to 5 or 20 dyne/cm2

unidirectional laminar shear stress resulted in a transient
elevation in NADH-dependent O22z formation, whereas oscil-
latory shear caused a sustained increase in oxidase activity.34

Several studies have demonstrated a critical role of NADH/
NADPH oxidase in angiotensin II–induced hypertension. In
cultured rat vascular smooth muscle cells, angiotensin II is
able to stimulate O22z generation by increasing the activity of
NADH/NADPH oxidase.31 Similarly, in rats made hyperten-
sive by chronic angiotensin II infusion, vascular O2

2z produc-
tion is dramatically increased, as is NADH/NADPH oxidase
activity.35 Blood pressure and vascular reactivity are restored
by exogenous liposome-encapsulated SOD in those rats.36

Additional studies have shown that the mRNA expression of
p22phox is increased in angiotensin II–induced hyperten-
sion.37 Accumulating evidence suggests that the NADH/
NADPH oxidase may be responsible for excessive O2

2z

generation in other cardiovascular diseases. Both basal and
NADH-stimulated O2

2z production is significantly elevated in
rats with heart failure secondary to chronic myocardial
infarction.38 Treatment with SOD improved endothelium-
dependent vasorelaxation markedly in those rats.38 Zalba et
al39 recently reported that NADH/NADPH oxidase-derived
O2

2z production is increased in SHRs. In segments of human
saphenous veins obtained from patients undergoing routine
coronary artery bypass surgery, Guzik et al40 reported that
both diabetes and hypercholesterolemia are associated with
increased NADH-dependent O2

2z production.
There remain several questions about the NADH/NADPH

oxidases of vascular tissues. The subunits of these enzymes
have not been identified precisely, and how they interact is
not understood. The precise manner in which their activity is
modulated is not well understood. Nevertheless, the prevail-
ing evidence suggests that activation of this source of O2

2z can
lead to endothelial dysfunction by reducing NOz bioavailabil-
ity. This phenomenon likely plays an important role in the
genesis of vascular disease in several pathophysiological
conditions.

Endothelial Nitric Oxide Synthase
A third source of vascular ROS production that has received
substantial attention is eNOS. eNOS is a cytochrome p450
reductase-like enzyme that catalyzes flavin-mediated electron
transport from the electron donor NADPH to a prosthetic
heme group. The enzyme requires tetrahydrobiopterin, bound
near this heme group, to transfer electrons to a guanidino
nitrogen of L-arginine to form nitric oxide. In the absence of
either L-arginine or tetrahydrobiopterin (BH4), eNOS can
produce O2

2z and H2O2. This phenomenon has been referred
to as NOS uncoupling. There have been several demonstra-
tions of this phenomenon in studies of the purified
enzyme.5,41,42

During the last 2 to 3 years, there has also been evidence
presented that eNOS can become uncoupled in vivo in a
variety of pathophysiological conditions. In the aorta of
stroke-prone spontaneously hypertensive rat, O2

2z production
is increased, and this can be normalized by treatment with
L-NAME or removal of the endothelium.43 Preliminary stud-
ies in our group have suggested that O2

2z produced in aortas
of mice with deoxycorticosterone acetate–salt hypertension
may come from eNOS, because it is attenuated by L-NAME
treatment and endothelium removal and does not occur in
eNOS-deficient mice with deoxycorticosterone acetate–salt
hypertension. Recently, nitrate tolerance has been associated
with an increase in vascular O2

2z production via uncoupling of
eNOS.44 Impaired endothelium-dependent vasorelaxation has
been observed in rats made insulin resistant by high-fructose
feeding and has been normalized by supplement with BH4.45

Intra-arterial infusion of BH4 has been shown to improve
endothelium-dependent vasodilation in chronic smokers, sug-
gesting that depletion of BH4 may have impact on turning
eNOS into a O2

2z-generating enzyme in human.46

The mechanisms whereby eNOS can become uncoupled in
vivo remain unclear. Recent studies from our laboratory have
suggested that peroxynitrite, the product of the reaction
between NOz and O2

2z, can oxidize BH4 and that this may lead

842 Circulation Research November 10, 2000

D
ow

nloaded from
 http://ahajournals.org by on February 3, 2023



to uncoupling of eNOS in vivo.47 BH4 biosynthesis is carried
out via an enzymatic pathway involving GTP cyclohydrolase
I (GTP-CH), 6-pyruvoyl-tetrahydropterin synthase, and sepi-
apterin reductase. Mutations in GTP-CH, the first-step en-
zyme catalyzes the biosynthesis of BH4, have been shown to
cause deficiency in BH4.48 In GTP-CH–deficient (hph-1)
mice, NOz/cGMP production is reduced in brain, and this can
be corrected by peripheral administration of BH4.48

Uncoupling of eNOS in the endothelium may lead to
oxidative stress and endothelial dysfunction via at least 3
mechanisms. First, the enzymatic production of NOz is dimin-
ished, allowing the radicals that it normally might react with
to attack other cellular targets. Second, the enzyme begins to
produce O2

2z, contributing to oxidative stress. Finally, it is
likely that eNOS can become partially uncoupled, such that
both O2

2z and NOz are produced simultaneously. Under this
circumstance, eNOS may become a peroxynitrite generator,
leading to a dramatic increase in oxidative stress.

Summary
During the last 2 decades, a large body of evidence has
suggested that endothelial dysfunction may be caused by
accelerated inactivation of NOz by reactive oxygen species.
This phenomenon has been implicated in many pathophysi-
ological conditions, including hypercholesterolemia, athero-
sclerosis, cigarette smoking, hypertension, diabetes, and heart
failure. As summarized in the Figure schematically, 3 major
enzyme systems, namely xanthine oxidase, NADH/NADPH
oxidase, and eNOS, are likely enzymatic sources contributing
to increased production of reactive oxygen species in these
various pathophysiological states. It is likely that other
enzyme systems also contribute to radical production in the
vascular wall. Recent preliminary studies have indicated that
cytochrome p450, a probable source of the so-called endo-
thelium-derived hyperpolarizing factor, may also be an im-
portant source of superoxide and contribute to inactivation of
NOz (Dr Rudi Büsse, personal communication, August 2000).
As the role of these various enzyme sources of ROS become
clear, it may be possible to use more specific therapies to

prevent their production and ultimately prevent endothelial
dysfunction.
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