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Abstract Growing evidence suggests that reactive oxygen
species such as hydrogen peroxide (H2O2) can function as
important signaling molecules in vascular cells. H2O2-activated
redox-sensitive pathways mediate both physiological and path-
ological responses given the location and concentration of H2O2.
We showed previously for the first time that calcium/calmodulin-
dependent protein kinase II (CaMKII) is redox-sensitive in
endothelial cells, mediating H2O2 upregulation of endothelial
nitric oxide synthase. This response is always accompanied by an
elongation phenotype of endothelial cells, implying modulation of
actin cytoskeleton. In the present study, we investigated the role
of CaMKII in H2O2 activation of p38 MAPK/heat shock
protein 27 (HSP27) pathway and ERK1/2, both of which have
been known to regulate actin reorganization in endothelial cells.
Addition of H2O2 to bovine aortic endothelial cells increased
ERK1/2 phosphorylation and activity, which was attenuated by a
specific inhibitor of CaMKII, KN93. KN93 also prevented H2O2

activation of p38 MAPK. Transfection of endothelial cells with a
CaMKII-specific inhibitory peptide (AA 281–309) reduced H2O2

phosphorylation of p38 MAPK and ERK1/2. Furthermore,
blockade of CaMKII or janus kinase 2 (JAK2, downstream of
CaMKII) prevented H2O2 activation of HSP27. KN93 attenu-
ated, whereas AG490 (JAK2 inhibitor) abolished, H2O2-induced
formation of actin stress fibers. Blockade of ERK1/2 inhibited
H2O2 phosphorylation of HSP27 transiently. It also partially
prevented H2O2 induction of actin stress fibers. In summary,
redox-sensitive activation of p38 MAPK/HSP27 pathway or
ERK1/2 in endothelial cells requires CaMKII. These pathways
are at least partially responsible for H2O2 induced reorganiza-
tion of actin cytoskeleton.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Reactive oxygen species such as hydrogen peroxide (H2O2)

can function as important signaling molecules in vascular

cells [1–3]. In particular, H2O2 is involved in modulating

redox-sensitive mitogenic responses and gene regulation in

the endothelium [2,4–6]. For example, we have recently
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shown that H2O2 potently upregulates endothelial NO
�

syn-

thase (eNOS) gene expression in endothelial cells via activa-

tion of calcium/calmodulin-dependent kinase II (CaMKII)

and janus kinase 2 (JAK2) [5,7]. This was the first charac-

terization of CaMKII as a mediator of redox-sensitive gene

regulation in the endothelium. Interestingly, upregulation of

eNOS gene by H2O2 is always accompanied by a morphology

change of endothelial cell phenotype from cobblestone to

elongation, suggesting that modulation of actin cytoskeleton

occurs during this response. Consistent with our observa-

tions, earlier work by Liu et al. [8] demonstrated alignment of

actin filament in H2O2 (same low concentrations employed)-

stimulated endothelial cells. p38 MAPK phosphorylation of

heat shock protein 27 (HSP27), an actin binding protein, has

been previously shown to mediate H2O2 reorganization of

actin cytoskeleton [9–11]. The inter-relationship between

CaMKII/JAK2 and H2O2 activation of p38 MAPK/HSP27,

and the consequence of this interaction regarding actin cy-

toskeleton were investigated in the present study. Borbiev

et al. [12,13] have previously shown that CaMKII activation

of ERK1/2 is involved in thrombin induction of actin stress

fibers in endothelial cells. The role of CaMKII in H2O2 ac-

tivation of ERK1/2 and its relation to H2O2 regulation of

actin cytoskeleton was also studied.
2. Materials and methods

2.1. Materials
KN93, AG490, PD98059, SB202190, and the CaMKII inhibitory

peptide (AA 281–309, Cat#208711) were purchased from Calbiochem,
San Diego, CA. Antibodies against phospho-ERK1/2, phospho-p38
MAPK and phospho-HSP27 were obtained from Cell Signaling
Technology, Beverly, MA. Other chemicals were obtained from Sigma
in highest purity.
2.2. Cell culture
Bovine aortic endothelial cells (Cell Systems) were cultured in Media

199 (Invitrogen Life Technologies, Carlsbad, CA) containing 10% fetal
calf serum (FCS, Hyclone Laboratories, Logan, UT) as described
previously [5]. One-day post confluent cells, starved with 5% media
overnight, were used for experiments [5].

2.3. Western blot analysis of ERK1/2, p38 MAPK and HSP27
phosphorylation

Activation of ERK1/2 in H2O2-stimulated endothelial cells was as-
sessed by its phosphorylation at threonine 202 and tyrosine 204, and
by its ability to phosphorylate myelin basic protein (MBP) (see below
for the kinase assay). For Western blot analysis of ERK1/2
phosphorylation, 20 lg of cellular proteins was separated in 10%
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SDS–PAGE and transferred to nitrocellulose membranes. The mem-
branes were blocked with 5% non-fat milk at room temperature for 2 h
and then incubated with the phospho-specific antibody for ERK1/2
(1:1000 dilutions) at 4 �C overnight. After washing with PBST (0.1%
Tween in PBS) and subsequent incubation with the goat anti-rabbit
secondary antibody (1:2000), the membranes were washed again with
PBST and ERK1/2 phosphorylation determined by chemiluminescence
detection with ECL reagent (Amersham Biotechnology). The intensity
of the target bands was analyzed with a Bio-Rad Gel Doc 1000 system.
The phosphorylation of p38 MAPK and HSP27 was examined fol-
lowing identical procedure with the phospho-specific antibodies
against Threonine 180-Tyrosine 182 at p38 MAPK (1:1000) or Serine
82 at HSP27 (1:2000), respectively.
2.4. In-gel kinase assay of ERK1/2
To examine ERK1/2 activity, 20 lg of cellular proteins was sepa-

rated in 10% polyacrylamide gel containing myelin basic protein
(MBP, Sigma Chemical, St. Louis, MO) as a specific substrate [14].
The gel was washed with 40 mmol/L HEPES (pH 7.4) to renature the
proteins before incubation with 250 lCi [c-32P]ATP in phosphoryla-
tion buffer (25 mmol/L HEPES, pH 7.4, 10 mmol/L MgCI2, and
0.1 lmol/L cold ATP). After being washed with tetrasodium pyro-
phosphate (1% wt/vol)-containing HEPES buffer, the gel was dried
and subjected to autoradiography. A phosphorylated MBP band was
clearly visible at the expected molecular weight of ERK1/2, 44/42 kDa,
and reflective of the ERK1/2 activity as described by Liu et al. [14].
2.5. Transient transfection with CaMKII inhibitory peptide
Endothelial cells at 90% confluence were transiently transfected with

a CaMKII-specific (281–309) inhibitory peptide (1–2 ng/ml) or b-gal in
Chariot reagent (Active Motif, Carlsbad, CA) according to the man-
ufacturer’s manual. Transfections were performed in serum-free media
199 for 2 h and then 10% serum was added. Protein phosphorylation
by H2O2 in peptide-transfected cells was examined 48 h later. In the b-
gal-transfected plate, blue cells were counted and the number divided
by the total cell number to calculate the transfection efficiency. The
effects on kinase activation of CaMKII inhibitory peptide were nor-
malized against this ratio.
2.6. Analysis of actin cytoskeleton by confocal microscopy
Endothelial cell monolayers cultured on glass coverslips were

transfected with a DNA construct of pEYFP-actin (BD Biosciences
Clontech, Palo Alto, CA) using Effectene reagent (Qiagen Inc., Va-
lencia, CA) following the instructions of the manufacturer. The
pEYFP-actin construct expresses yellow-green fluorescent protein-
actin fusion protein within the cells and the fluorescent images reflect
real-time structure of actin cytoskeleton. Cells were used for H2O2

experiments 48 h later. The redistributed actin cytoskeleton in control
and 3-h H2O2 treated cells in successfully transfected yellow-green
fluorescent cells were captured and analyzed with a Zeiss Confocal
Microscope at excitation and emission wavelengths of 513 and 527 nm,
respectively.
In separate experiments, actin stress fibers or polymerized actin fil-

aments in H2O2 stimulated endothelial cells were stained with Alexa
Fluro 488-Phalloidin (Cat# A12379, Molecular Probes, Eugene, OR).
In brief, one-day post confluent endothelial cells cultured on glass
coverslips were treated with different kinase inhibitors for 1 h prior to
stimulation with H2O2 for 3 h. Cells were then fixed with 4% para-
formaldehyde, permeabilized with 0.1% Triton, blocked with BSA/PBS
and then incubated with Phalloidin for 30 min in dark. The coverslips
were mounted using the ProLong antifade mounting media (Molecular
Probes, Eugene, OR) and images of actin filaments captured using a
confocal microscope as described above.
2.7. Statistical analysis
Differences in ERK1/2 or p38MAPK phosphorylation among

control cells and cells treated with H2O2 in the presence or absence
of CaMKII peptide inhibitor were compared with one way ANO-
VA. When differences were indicated, the Dunnet’s post hoc test
was employed. Statistical significance was set for P < 0:05. All
grouped data shown in the figures were presented as means �
S.E.M.
3. Results

3.1. CaMII/JAK2 is upstream of hydrogen peroxide activation

of p38 MAPK/HSP27

We have previously shown that H2O2 activates CaMKII in

endothelial cells under identical experimental protocols [5]. In

this earlier study, we demonstrated that H2O2 increased

CaMKII autophosphorylation (examined by a phospho-

specific antibody) and activity (assessed by an in-gel kinase

assay) [5]. In this study, we also demonstrated that CaMKII/

JAK2 activation is required for H2O2 upregulation of eNOS

[5], which is always accompanied by an elongation phenotype

of endothelial cells. We thus examined effects on p38 MAPK

activation of HSP27, the pathway known to modulate actin

cytoskeleton in endothelial cells [9], of CaMKII/JAK2. To

examine a role of CaMKII or JAK2 in H2O2 activation of

p38 MAPK, endothelial cells were pretreated with KN93

(10 lmol/L), a selective inhibitor for CaMKII, or AG490

(10 lmol/L), a specific antagonist of JAK2, for 1 h prior to

H2O2 (100 lmol/L unless otherwise stated) stimulation and

subsequent analysis of p38 MAPK phosphorylation. KN93

inhibits CaMKII by competitive binding to the calmodulin-

binding domain of the enzyme. We have previously shown

that KN93 inhibits CaMKII activity in endothelial cells [5].

Others have also demonstrated that KN93 inhibits CaMKII

specifically in hepatocytes [15], fibroblasts [16], neurons [17]

and vascular smooth muscle cells [18,19] in the concentration

we employed.

The p38 MAPK phosphorylation, assessed by Western

blotting with a phospho-specific antibody, was increased by

H2O2 (Fig. 1A). This response was abolished by KN93 and

markedly attenuated by AG490 (Fig. 1A). Furthermore, p38

MAPK phosphorylation in responses to different concentra-

tions of H2O2 (100, 200, and 400 lmol/L) or at different time

points post H2O2 exposure (5, 20, and 40 min) was examined.

As is evident, H2O2 dose- and time-dependently increased p38

MAPK phosphorylation and these responses were attenuated

by KN93 (Fig. 1B). In addition, transfection of endothelial

cells with a CaMKII inhibitory peptide (AA 281–309) mark-

edly reduced H2O2 phosphorylation of p38 MAPK by ap-

proximately 70% after normalization for transfection efficiency

against b-gal (Fig. 1C, b-gal was provided by the manufacturer

for transfection control). The inhibitory peptide blocks cal-

cium/calmodulin activation of CaMKII, and has been previ-

ously shown to inhibit CaMKII activation in neurons and

myocytes [20–22]. Take together, these data suggest that

CaMKII/JAK2 functions as a novel redox-sensitive activator

of p38 MAPK in endothelial cells via direct or indirect

mechanisms.

As is obvious in Fig. 2A, H2O2 treatment of endothelial cells

led to a time-dependent phosphorylation of HSP27. Pretreat-

ment with KN93 for 1 h markedly reduced HSP27 phos-

phorylation (Fig. 2A). Likewise, AG490 pretreatment

significantly prevented H2O2 phosphorylation of HSP27

(Fig. 3B), together suggesting that CaMKII and JAK2 are

upstream of redox-regulation of the actin binding protein

HSP27. The p38 MAPK/HSP27 pathway has been shown

previously to mediate actin reorganization in response to H2O2

in human endothelial cells [9]. Consistent with this previous

observation, H2O2 phosphorylation of HSP27 was found at-

tenuated by SB202190 (10 lmol/L), a selective inhibitor of p38

MAPK (Fig. 2B).



Fig. 1. H2O2 activation of p38 MAPK requires CaMKII. (A) Post-confluent endothelial cells were pretreated with a selective CaMKII inhibitor
KN93 (10 lmol/L) or AG490, a specific inhibitor for janus kinase 2 (JAK2) for 1 h prior to stimulation by H2O2 (100 lmol/L) for 40 min. Cellular
proteins were subjected to Western blotting for p38 MAPK phosphorylation with a phospho-specific antibody (Cell Signaling Technology). (B)
Endothelial cells were treated with H2O2 (100 lmol/L) for 5, 20 and 40 min or different concentrations of H2O2 (100, 200, and 400 lmol/L) for 40 min
in the presence or absence of KN93 pretreatment. Phosphorylation of p38 MAPK was examined as described. (C) Endothelial cells were transfected
with an inhibitory peptide of CaMKII (AA208-319, Calbiochem) for 48-h prior to stimulation with H2O2 (100 lmol/L). Phosphorylation of p38
MAPK was analyzed as described above. Each experiment was repeated four times and the representative Western blot and grouped densitometric
data are illustrated (means� S.E.M.).

Fig. 2. Role of CaMKII/JAK2 in H2O2 activation of heat shock protein 27 (HSP27). (A) Endothelial cells were exposed to H2O2 (100 lmol/L) for 5,
20, and 40 min in the presence or absence of one-hour KN93 (10 lmol/L) pretreatment. HSP27 phosphorylation was analyzed by Western blotting
using a phospho-specific antibody (Cell Signaling Technology). (B) Endothelial cells were exposed to H2O2 (100 lmol/L) for 5, 20, and 40 min in the
presence or absence of one-hour AG490 (10 lmol/L) or SB202190 (10 lmol/L) pretreatment. HSP27 phosphorylation was analyzed as described
above.
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Fig. 3. H2O2 activation of ERK1/2 requires CaMKII. (A) Post-confluent endothelial cells were pretreated with a selective CaMKII inhibitor KN93
(10 lmol/L) for 1 h prior to stimulation by H2O2 (100 lmol/L) for 40 min. In-gel kinase assay was performed for analysis of ERK1/2 activity. (B)
Endothelial cells were treated with H2O2 (100 lmol/L) for 5, 20 and 40 min or different concentrations of H2O2 (100, 200, and 400 lmol/L) for 40 min
in the presence or absence of KN93 pretreatment. Cellular proteins were subjected to Western blotting for ERK1/2 phosphorylation with a phospho-
specific antibody (Cell Signaling Technology). (C) Endothelial cells were transfected with an inhibitory peptide of CaMKII (AA208-319, Calbio-
chem) for 48-h prior to stimulation with H2O2 (100 lmol/L). ERK1/2 phosphorylation was analyzed as described above. Each experiment was
repeated four times and the representative Western blot and grouped densitometric data are illustrated (means�S.E.M.). (D) Endothelial cells were
exposed to H2O2 (100 lmol/L) for 5, 20, and 40 min in the presence or absence of one-hour PD98059 (50 lmol/L) pretreatment. HSP27 phos-
phorylation was analyzed using a phospho-specific antibody (Cell Signaling Technology).
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3.2. CaMKII is upstream of H2O2 activation of ERK1/2

Previous work by Borbiev et al. [12,13] demonstrated that

ERK1/2 activation is involved in thrombin induced actin re-

organization in endothelial cells. To examine a role of CaM-

KII in H2O2 activation of ERK1/2, endothelial cells were

pretreated with KN93 (10 lmol/L) for 1 h prior to H2O2

stimulation and subsequent analysis of ERK1/2 phosphoryla-

tion or activity. The activity of ERK1/2, analyzed by the in-gel

kinase assay, was robustly increased in endothelial cells treated

with H2O2 for 60 min and this response was completely pre-

vented by KN93 (Fig. 3A). Likewise, ERK1/2 phosphoryla-

tion in responses to different concentrations of H2O2 (100, 200,

and 400 lmol/L) or at different time points post H2O2 expo-

sure (5, 20, and 40 min) was determined by Western blot
analysis. Of note, H2O2 dose- and time-dependently increased

ERK1/2 phosphorylation and these responses were attenuated

by KN93 (Fig. 3B). These experiments were repeated for 3–4

times and overall KN93 has little effect on basal phosphory-

lation of ERK1/2.

Furthermore, transient transfection of endothelial cells with

a CaMKII inhibitory peptide (AA 281–309) markedly reduced

H2O2 phosphorylation of ERK1/2 after normalization for

transfection efficiency against b-gal (Fig. 3C). Taken together,

these data suggest that CaMKII functions as a novel redox-

sensitive activator of ERK1/2 in endothelial cells. Our data

seem to be consistent with earlier observations that JAK2, the

downstream effector of CaMKII, lies upstream of ERK1/2 in

response to a variety of stimuli in different cell types [23–27].
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3.3. Role of ERK1/2 in hydrogen peroxide activation of HSP27

It has been shown that CaMKII mediates thrombin activa-

tion of ERK1/2 and formation of actin stress fibers [12,13].

The potential role of HSP27 in this response, however, re-

mained obscure. Endothelial cells were treated with ERK1/2

inhibitor PD98059 (50 lmol/L) for 1 h prior to H2O2 stimu-

lation. As is evident, PD98059 reduced HSP27 phosphoryla-

tion at early time point (<10 min) post H2O2 stimulation while
Fig. 4. (A) Role of CaMKII and JAK2 in H2O2 modulation of actin cyto
pEYFP-actin for 48 h. Cells were stimulated with H2O2 (100 lmol/L) in the
SB202190, specific inhibitors of CaMKII, JAK2 or p38 MAPK, respectively
cells in successfully transfected yellow-green fluorescent cells were capture
emission wavelengths of 513 and 527 nm, respectively. (B) Role of CaMKII,
Fluro 488–Phalloidin assay. One-day post confluent endothelial cells cultured
prior to stimulation with H2O2 for 3 h. Cells were then fixed with 4% paraform
then incubated with Rhodamine–Phalloidin for 30 min in dark. The covers
lecular Probes, Eugene, OR) and images of actin filaments captured using a
having no effect at later time points (20–40 min) (Fig. 3D). By

contrast, as described earlier, blockade of CaMKII, JAK2 or

p38 MAPK attenuated H2O2 phosphorylation of HSP27 at all

time points examined (longest 40 min, Fig. 1A and B). Take

together, these data seem to suggest that while ERK1/2 is

transiently involved in HSP27 activation, CaMKII/JAK2/P38

MAPK pathway is the dominant cascade that is responsible

for H2O2 activation of HSP27 in endothelial cells.
skeleton. Endothelial cells were transfected with a DNA construct of
presence or absence of one-hour pretreatment with KN93, AG490, or
. The redistributed actin cytoskeleton in control and 3 h-H2O2 treated
d and analyzed with a Zeiss Confocal Microscope at excitation and
JAK2 and ERK1/2 in H2O2 modulation of actin cytoskeleton – Alexa
on glass coverslips were treated with different kinase inhibitors for 1 h
aldehyde, permeabilized with 0.1% Triton, blocked with BSA/PBS and
lips were mounted using the ProLong antifade mounting media (Mo-
confocal microscope as described above.
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3.4. Role of CaMKII, JAK2 and ERK1/2 in H2O2 induced

reorganization of actin cytoskeleton

To examine the effect on H2O2-induced reorganization of

actin cytoskeleton of CaMKII or JAK2 blockade, endothelial

cells were transfected with a construct of pEYFP-actin as de-

scribed in Section 2. Exposure of endothelial cells to H2O2 for

3 h caused a robust increase in actin stress fiber formation

(Fig. 4A). This response was prevented by KN93 and abol-

ished by AG490 pretreatment (Fig. 4A). SB202190 also pre-

vented this response to serve as a positive control (Fig. 4A).

Taken together, these data seem to suggest that H2O2 activa-

tion of CaMKII and JAK2 is involved in actin cytoskeleton

reorganization in endothelial cells, presumably via HSP27-

dependent mechanisms. This response may at least partially

explain the elongation morphology accompanying H2O2 up-

regulation of eNOS mRNA.

In separate experiments, polymeric actin filaments were

stained using Alexa Fluro 488–Phalloidin. Consistent to find-

ings using pEYFP-actin transfection, three-hour treatment

with H2O2 potently increased the formation of actin stress fi-

bers (Fig. 4B). This response was apparently prevented by

blockade of p38 MAPK, CaMKII and JAK2 with SB202190,

KN93 and AG490, respectively. Inhibition of ERK1/2 with

PD98059, however, also reduced actin stress fiber formation in

H2O2 treated cells (Fig. 4B). In view of the transient inhibition

of HSP27 phosphorylation by PD98059, these data seem to

suggest that HSP27 is unlikely the major downstream effector

of ERK1/2 with regards to modulation of actin cytoskeleton.
H2O2

CaMKII

JAK2

p38 MAPK ERK1/2

HSP27 ??

Actin Cytoskeleton 
Reorganization

Upregulation 
of eNOS Gene

Ref. 5

Transient

Fig. 5. Proposed signaling cascades mediating H2O2 induced reorga-
nization of actin cytoskeleton.
4. Discussion

The present study has defined a novel signaling pathway

whereby redox-sensitive activation of CaMKII is required for

ERK1/2 and p38 MAPK activation in endothelial cells. Fur-

thermore, CaMKII and its downstream effector JAK2 are

upstream of H2O2 activation of p38 MAPK/HSP27 pathway

and may subsequently be responsible for H2O2 induction of

actin stress fibers. Though ERK1/2 is only transiently involved

in HSP27 phosphorylation, it appears partially involved in

actin reorganization induced by H2O2.

Importantly, these data provide new insights into the sig-

naling functions of CaMKII in endothelial cells. CaMKII has

been well characterized in neuronal tissues and is a critical

mediator of long term memory [14,28,29]. Its function in the

endothelium, however, has remained mostly unknown. We

have previously shown that one of the important functions of

CaMKII in the endothelium is to mediate H2O2 upregulation

of eNOS [5]. Recent studies demonstrate that CaMKII is also

involved in acute production of NO
�

from endothelial cells as

well as relaxation responses to anesthetics of blood vessels

[30,31]. Interestingly, the long-term eNOS upregulation re-

sponse is always accompanied with elongation morphology of

endothelial cells, implicating that the signaling pathways me-

diating eNOS gene regulation might also regulate actin cyto-

skeleton. Indeed our new data demonstrated that CaMKII and

its downstream effector JAK2, both of which are required for

H2O2 upregulation of eNOS, are upstream of p38 MAPK/

HSP27 pathway that was found important for actin cytoskel-

eton reorganization in endothelial cells. Inhibition of CaMKII

or JAK2 with KN93 or AG490, respectively, prevented H2O2
induced actin stress fiber formation in endothelial cells. This

seems to share some similarity with recent reports that CaM-

KII, by altering phosphorylation of non-muscle filamin, is

responsible for enhanced endothelial permeability in response

to thrombin [12]. It is also consistent with earlier studies where

JAK2 was found upstream of p38 MAPK in response to

growth hormone stimulation [32].

Using a selective inhibitor and a specific inhibitory peptide

for CaMKII, we found that activation of CaMKII is necessary

for H2O2 activation of MAPK family member ERK1/2. Both

the phosphorylation and activity of ERK1/2 were attenuated

by blockade of CaMKII. This observation fits into the concept

that H2O2 is growth-stimulating in the endothelium [1,2].

Furthermore, our findings are consistent with recent observa-

tions by Bortiev et al. [13] that thrombin-induced ERK1/2

activation is downstream of CaMKII in endothelial cells.

Likewise, thrombin activation of ERK1/2 in vascular smooth

muscle cells was also CaMKII-dependent [33]. In addition, a

recent study reported that by binding to and activating Raf-1,

CaMKII mediated integrin activation of ERK1/2 [34]. Con-

sistent with these observations, our data further elucidated

that the redox-sensitive activation of ERK1/2 in endothelial

cells requires CaMKII. CaMKII/ERK1/2 pathway was found

important for thrombin regulation of actin cytoskeleton [12].

Likewise, our data demonstrated that CaMKII/ERK1/2 was

partially involved in H2O2 induced formation of actin stress

fibers. HSP27, however, is unlikely the major downstream ef-

fector of ERK1/2 in modulating actin structure as blockade of

ERK1/2 only transiently prevented H2O2 phosphorylation of

HSP27. A cartoon summarizing proposed signaling mecha-

nism is illustrated in Fig. 5.

In summary, these data characterized a novel role of

CaMKII in redox-sensitive regulation of MAPK family

members ERK1/2 and p38 MAPK in endothelial cells. Direct

evidence was provided on the involvement of these pathways

in H2O2 induced reorganization of actin cytoskeleton. These

observations would have broad applications to situations

whereby oxidant stress develops in the vasculature, including

atherosclerosis, hypertension and heart failure [3,35].
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