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Cell cycle deregulation is a cancer hallmark that has stimulated the development of mitotic inhibitors with

differing mechanisms of action. Quantitative phase imaging (QPI) is an emerging approach for determin-

ing cancer cell sensitivities to chemotherapies in vitro. Cancer cell fates in response to mitotic inhibitors

are agent- and dose-dependent. Fates that lead to chromosomal instabilities may result in a survival

advantage and drug resistance. Conventional techniques for quantifying cell fates are incompatible with

growth inhibition assays that produce binary live/dead results. Therefore, we used QPI to quantify post-

mitotic fates of G0/G1 synchronized HeLa cervical adenocarcinoma and M202 melanoma cells during

24 h of escalating-dose exposures to mitotic inhibitors, including microtubule inhibitors paclitaxel and

colchicine, and an Aurora kinase A inhibitor, VX-680. QPI determined cell fates by measuring changes in

cell biomass, morphology, and mean phase-shift. Cell fates fell into three groups: (1) bipolar division from

drug failure; (2) cell death or sustained mitotic arrest; and (3) aberrant endocycling or multipolar division.

In this proof-of-concept study, colchicine was most effective in producing desirable outcomes of sus-

tained mitotic arrest or death throughout its dosing range, whereas both paclitaxel and VX-680 yielded

dose-dependent multipolar divisions or endocycling, respectively. Furthermore, rapid completion of

mitosis associated with bipolar divisions whereas prolonged mitosis associated with multipolar divisions

or cell death. Overall, QPI measurement of drug-induced cancer cell fates provides a tool to inform the

development of candidate agents by quantifying the dosing ranges over which suboptimal inhibitor

choices lead to undesirable, aberrant cancer cell fates.

Introduction

Developing effective anti-cancer treatment regimens remains a
significant therapeutic challenge. Treatment selection based
on available diagnostic data including assessment of histologic
tumor subtype, clinical grade and stage, molecular bio-
markers, and genome-profiling studies can still lead to vari-

able patient outcomes. This indicates a pressing need to con-
tinue developing new agents and regimens.1 The prediction of
treatment outcomes and selection of therapeutic agents typi-
cally relies upon drug performance studies from preclinical
research and clinical trials. In these settings, drug perform-
ance assessments are most commonly by multi-day growth
inhibition assays in vitro and tumor shrinkage in vivo.
However, data from these binary analyses may fail to uncover
processes within cancer cells that further increase drug
resistance and tumor aggressiveness. Cancer cells that persist
after therapy may acquire additional genetic or epigenetic
changes that make future treatments progressively more
difficult.2 Therefore, a method that captures the full range of
cell fates after a specific treatment, for example with a
mitotic inhibitor, could reveal unsuspected suboptimal drug
regimens with an elevated risk of promoting more aggressive
tumors.

Specific mitotic inhibitors have frequent use to treat
specific cancers, such as paclitaxel for breast and ovarian
cancers. As a group they target the microtubule system or
associated cell division kinases with the goal of activating
growth checkpoints to induce mitotic arrest and apoptosis of
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cancer cells.3 Despite widespread use, most mitotic inhibitors
show neurotoxicity, poor in vivo efficacy, and are difficult to
dose adequately, thereby limiting applications.4 Preclinical
studies also reveal that post-treatment surviving cancer cells
may aberrantly exit from mitosis with multipolar cell divisions
or endocycling from a weakened mitotic checkpoint caused by
suboptimal mitotic inhibitor dosing.5,6 These mitotic aberra-
tions may cause aneuploidy, chromosome instability, and
increased tumor aggression.7–9 A rapid method to detect and
classify aberrant mitotic outcomes for mitotic inhibitor treated
cancers could improve drug development and selection.

Flow cytometry that uses DNA intercalating dyes, confocal
microscopy, fluorescence time-lapse microscopy, and multi-
day growth inhibition assays are current methods for assessing
cellular responses to mitotic inhibitors.5,6,10 Unfortunately
these approaches are often laborious, can be cell destructive,
are limited to discrete measurement time points that can miss
emerging therapy resistance, or require labeling that may
interfere with cell behavior. For example, the most commonly
practiced multi-day growth inhibition assays only provide total
numbers of viable or dead cancer cells in tissue culture at
specific treatment time points. EC50 values generated from
this type of counting assay only shows population trends and
overlooks phenotypic outcomes of individual cancer cells that
survive treatment. This approach therefore yields limited
insight into drug response kinetics and potential aberrant
outcomes.

To overcome limitations in current screening methods and
to increase throughput, we deployed a version of quantitative
phase imaging (QPI) we refer to as live cell interferometry
(LCI) to measure single cell responses to three mitotic inhibi-
tors with different mechanisms of action using dose-escalating
drug concentrations. Current state-of-the-art QPI techniques,
including digital holographic microcopy and spatial light
interference microscopy, accurately quantify optical path
length delays caused by cellular contents at submicron resolu-
tion, free of labeling agents and phototoxicity effects.11,12

Measurements of phase shifts are then processed to produce
biophysical cell parameters, such as dry mass and mass
transport.11,12 These relevant biophysical properties can be
analyzed in a wide range of QPI applications, such as measure-
ments of cytotoxicity.13,14 Our approach uses quadriwave
lateral shearing interferometry (QWLSI) to precisely quantify
the phase-shift of incident light interacting with the non-
aqueous mass, or biomass, of individual cells.15 The QWLSI
approach has been shown to be accurate over a range of
different specimen thickness and insensitive to imaging
location, magnification, or degree of spatial light coherence.16

Conversion of measured phase-shifts in light into biomass
uses an experimentally determined cell average specific refrac-
tive index, which enables quantifying changes in cell biomass
over time.17,18 Prior LCI studies revealed breast cancer cell line
sensitivities to trastuzumab (Herceptin) within 6 h, a speed
compatible for studies of patient biopsy materials, with results
replicating multi-day growth inhibition assays.19,20 More
recently, LCI successfully dissected tumor heterogeneity and

drug resistance for melanoma cells in a mixture21 and could
replicate known tumor sensitivities to cisplatin in mouse
patient-derived xenograft (PDX) models of breast cancer.22

These prior LCI studies validated QPI utility in cancer, but did
not evaluate cancer cell outcomes beyond binary growth inhi-
bition results. The use of multi-parametric QPI response profil-
ing data that could further inform preclinical drug develop-
ment and clinical drug selection is an exciting possibility
explored here.

In this proof-of-concept study, we provide a new multi-para-
metric analytical method to identify different cell fate out-
comes to mitotic inhibitors using QPI measurements of cell
biomass, morphology, and mean phase-shift of light. Our
study provides dynamic data on mitotic inhibitor activities and
the frequencies of abnormal and undesirable outcomes during
early exposure time points that may make tumors more
difficult to treat.7 Our cell fate identification strategy may also
be useful for developing and testing other anticancer agents
and regimens.

Materials and methods
Cells and cell culture

HeLa human cervical adenocarcinoma cells were from the
American Type Culture Collection (ATCC) and M202 human
melanoma cells were a gift from Dr Owen Witte (UCLA). HeLa
cells were maintained in 1 : 1 DME/F-12 media (Thermo Fisher
Scientific) and M202 cells were maintained in RPMI
1640 media (Thermo Fisher Scientific), with each media sup-
plemented by 10% FBS (Omega Scientific), 100 U mL−1 penicil-
lin (Corning), 100 µg mL−1 streptomycin (Corning) and
2 mmol/L-glutamine (Thermo Fisher Scientific).

Growth inhibition assay

Twelve-well flat bottom plates (Thermo Fisher Scientific)
received 5 × 104 cells per well. Paclitaxel (Sigma-Aldrich), col-
chicine (Sigma-Aldrich), or VX-680 (Selleckchem) small mole-
cule mitotic inhibitors, or DMSO (Sigma-Aldrich) carrier-
control, were added to cell culture media at the indicated
doses and durations (Fig. S1 and S2†). Cells from three repli-
cate wells per treatment condition were harvested each day,
stained with trypan blue, and counted using an automated cell
counter (Countess; Invitrogen).

Cell preparation for QPI

ibidi 4-well Ph+ μ-slides received 1.5 × 104 cells per mL that
were then grown for 7–10 h to homeostasis. Media containing
2 mM thymidine (Sigma-Aldrich) was added to arrest HeLa
cells in G0/G1 phase for 18 h and M202 cells for 20 h.
Synchronized cells were released from cell cycle block by
media washing three times. Fresh media with the indicated
doses of paclitaxel, colchicine, VX-680, or DMSO were then
added to the 4-well μ-slide and then sealed with anti-evapor-
ation oil (ibidi) before QPI on the microscope stage.
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Live cell interferometry

QPI of HeLa and M202 cells was performed on an Axio
Observer A1 inverted microscope (Zeiss) with a SID4Bio quad-
riwave lateral shearing interferometry (QWLSI) camera
(Phasics). A temperature and CO2 regulated stage-top cell incu-
bation chamber (ibidi) was fit to a motorized xy stage
(Thorlabs) to maintain environmental homeostasis and enable
QPI at multiple locations. A Zeiss LD Plan Neofluar 20× NA 0.4
objective was heated and maintained at 37 °C with a custom
built copper objective heater driven by a heat controller
(Thorlabs). Trans-illumination was by a 660 nm center wave-
length collimated LED (Thorlabs). Image collection occurred
every 10 min for 24 h at 15 randomly selected imaging
locations per well containing cells plated with sufficient
spacing to enable automated image processing and biomass
segmentation. Imaging locations were selected within the
central part of each well, where the highest quality quantitative
phase information can be obtained without aberrations
caused by the cell culture apparatus or optical hardware. The
selected imaging fields cover a range of locations within each
imaged well, to obtain a sample that is representative of the
cell population (Fig. S3†).

QPI data analysis

Interferograms captured by the SID4Bio QWLSI camera were
converted to phase-shift and intensity images using the
Phasics MATLAB software development kit. These images were
analyzed using custom MATLAB (MathWorks) scripts that
eliminated background aberrations by fitting a 4th order
Zernike surface to cell-free regions and subtracting the fitted
surface from the image. Cell biomass data was extracted from
background corrected images by integrating light phase-shift
in segmented cell projected areas and multiplying by the
experimentally determined specific refractive increment of
0.0018.17,23,24 Data analysis of cell fates and time spent in
mitosis are performed using morphology as discussed in the
following section. The entire procedure requires 3–4 hours for
image processing and data analyses, depending on the
number of locations imaged in each experiment.

Morphology metrics

Mean phase shift: The mean phase-shift of a cell is obtained by
dividing the total integrated phase-shift for that particular cell
by its projected area. Interphase flat and spread-out versus
round and mitotic phase HeLa cells were sampled to establish
average mean phase-shift values for both morphologies. Since
HeLa and M202 cells share comparable sizes, morphologies,
optical densities and the same tracking criteria for the
MATLAB tracking algorithm, the same average mean phase-
shift values are representative for both cell types (Fig. S4†).
Shape factor: The shape factor of a cell, also called circularity
or isoperimetric quotient, is calculated by dividing the pro-
jected area, A, of a cell by its circumference or the length of its
perimeter, P, (4πA/P2). Random flat HeLa and M202 cells and
mitotic HeLa cells were sampled to establish average shape

factor values for both morphologies (Fig. S4†). A perfect circle
has a shape factor of 1.0 and an irregular shape, such as an
interphase adherent cell, has a shape factor of approximately
0.5 (Fig. S4†).

Flow cytometry

Cells were collected from T25 flasks after 24 and 48 h of drug
exposure, washed once with 1× PBS, pH 7.4, and then re-sus-
pended in 500 μL of FxCycle™ PI/RNase Staining Solution
(Thermo Fisher Scientific). Flow cytometry was performed on
FACS BD LSRII and FACS BD Fortessa flow cytometers (BD
Biosciences). DNA content analysis was by FlowJo software.

Statistical analysis

Chi-square tests of independence were performed on contin-
gency tables assessing the observed cell fate counts per inhibi-
tor dosage for significant association relative to expected
counts in each drug treatment panel with a 95% confidence
interval (Prism 6, GraphPad, Inc.). Dose response curve-fitting
was performed using the curve fitting toolbox in MATLAB
(MathWorks). Two-sample Kolmogorov–Smirnov (KS) tests
were performed between bipolar cell division versus prolonged
mitotic arrest and cell death fate distributions for each drug
treatment panel in MATLAB with a 95% confidence interval.
One-way ANOVA with unbalanced sample groups was per-
formed on duration of mitosis datasets between cell fate
groups in MATLAB with a 95% confidence interval. Statistical
significance required p < 0.05.

Results
Identifying post-mitotic cell fate outcomes using QPI

We deployed QPI to measure synchronized HeLa and M202
single cancer cell biomass and morphology responses after
mitotic entry, in the presence of escalating doses of several
mitotic inhibitors (Fig. 1 and Table 1). We chose paclitaxel, a
microtubule stabilizing agent, colchicine, a microtubule de-
stabilizing drug, and VX-680, an Aurora kinase A inhibitor that
represent a range of mitotic inhibitor modes of action. Cells
were treated with each drug for 5 h before QPI of randomly
selected locations at 10 min imaging intervals over the next
24 h (Fig. 1A). Changes in biophysical and morphological para-
meters over the imaging period provided data to determine
cell fate outcomes of single cancer cells in each condition
(Fig. 1B and C). Two EC50 values, one for successful bipolar
divisions representing drug failure and one for cell death/
arrest, were calculated based on the distributions of cell fate
outcomes in the sampled cell populations (Fig. 1D). ΔEC50,
the difference between these two EC50 values, therefore
describes the concentration range over which cancer cells
display aberrant mitotic exits at suboptimal dosages for each
type of drug treatment (Fig. 1D).

We classified the mitotic fate of each tracked cancer cell
into one of five categories: (1) successful bipolar division, (2)
multipolar division, (3) endocycling, (4) cell death, and (5) pro-
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Fig. 1 Experimental design and analysis schematics. (A) Timeline of the experiment, showing cell synchronization and period of QPI. (B) Example
QPI images of single HeLa cells under 50 nM of colchicine treatment. The same cells outlined in green and purple were tracked continuously over
time to determine their post-mitotic entry fates, in this case are death and prolonged mitotic arrest. Color bar indicates phase shift in nm. Time
stamps indicate time since start of drug exposure. (C) Representative schematic of biomass, mean phase-shift and shape factor data over time for
two cell fates shown in (B): death and mitotic arrest. (D) Representative schematic of two EC50 curves generated based on normalized cell-fate out-
comes distributions from randomly sampled single cells over a range of drug concentrations. The difference between the two EC50 values, ΔEC50,
provides a dosing range in which the drug can potentially cause aberrant mitotic exits.
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longed mitotic arrest (Fig. 2A). We then subjectively divided
these five outcomes into three groups. Group 1 is successful
bipolar divisions, representing the failure of a drug to block
mitosis at the surveyed doses. Group 2 includes prolonged
mitotic arrest and cell death, which are desirable anticancer cell
fates. Group 3 fates are hidden in growth inhibition assays and
include multipolar divisions and endocycling. Group 3 fates can
yield chromosomal aberrations and make tumor cells increas-

Table 1 Mitotic inhibitors drug concentrations administered to M202
and HeLa cell lines in live cell interferometer study

Cell
lines Paclitaxel (nM) Colchicine (nM) VX-680 (nM)

HeLa 10, 50, 100, 500 50, 150, 500, 1500, 2500 100, 300, 600
M202 1, 3, 9, 50, 100,

500
1, 5, 10, 20, 50 30, 90, 150, 300,

600

Fig. 2 Cell fate algorithm with examples. (A) A decision tree diagram showing the MATLAB algorithm for determining cell fates based on dynamic
changes in cell biomass, mean phase-shift, and shape factor measured by QPI. (B) Example of a HeLa cell undergoing a bipolar division. (C) Example
of a HeLa cell dying. (D) Example of a HeLa cell in prolonged mitotic arrest. (E) Example of a HeLa cell undergoing a multipolar division. (F) Example
of a HeLa cell undergoing endocycling.

Analyst Paper

This journal is © The Royal Society of Chemistry 2019 Analyst

Pu
bl

is
he

d 
on

 1
4 

N
ov

em
be

r 
20

19
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

L
os

 A
ng

el
es

 o
n 

11
/2

0/
20

19
 6

:5
4:

19
 P

M
. 

View Article Online

https://doi.org/10.1039/c9an01346f


ingly aggressive and difficult to eradicate.7–9 Importantly, con-
ventional multi-day growth inhibition counting assays combine
group 1, group 2 mitotic arrest, and group 3 outcomes to report
on the cumulative number of live cancer cells at specific time
points during and post-drug treatment without discriminating
group 3 unfavorable and potentially dangerous outcomes.

Criteria for classifying cell fates relies upon specific bio-
physical and morphological QPI measurements. A sharp surge
in mean phase-shift above 140 nm and shape factor, a
measurement of roundness, above 0.7 defines the time point
of mitotic entry as cells ‘round up’ (Fig. S4†).25 During a suc-
cessful bipolar division, a single cell separates into two cells
and then flattens to resume growth during interphase. The
mitotic interval with cytokinesis is complete when two cells
emerge at or near the former parent cell location with mean
phase-shift and shape factor below 140 nm and 0.7 thresholds
(Fig. 2A and B).25 A cell death fate occurs when cell biomass
shows either a sudden or a slow decline following mitotic
entry (Fig. 2A and C).26 During cell death the mean phase-shift
through the cell decreases but stays above the 140 nm
threshold due to pyknosis, karyorrhexis, and cytoplasm
content condensation.27 The shape factor value also decreases
when severe membrane blebbing or cell disintegration occurs
(Fig. 2C). A prolonged mitotic arrest is identified by stagnation
of changes in cell biomass, with mean phase-shift and shape
factor remaining above 140 nm and 0.7 thresholds, and no cell
division or other morphological changes occurring (Fig. 2A
and D). A multipolar cell division fate shows the same time-
dependent tracing pattern in mean phase-shift, shape factor,
and biomass accumulation as bipolar divisions with three or
more cells arising at or near the previous parent cell location
(Fig. 2A and E). Following multipolar divisions, not all daugh-
ter cells grow or thrive, likely due to aberrant chromosome par-
titioning.28 Finally, QPI identifies endocycling when a cancer
cell shows a sudden surge in mean phase-shift and shape
factor, indicative of mitotic ‘rounding’, but returns to a G0/G1
flat morphology, mean phase-shift under 140 nm, and shape
factor less than 0.7 without cell division (Fig. 2A and F).29 In
cases when single cells are hard to dissect from neighbors or
are difficult to track over time, we apply manual screening cor-
rections to the results of the cell fate algorithm.

Calculating EC50,growth and EC50,death using QPI quantified cell
fate outcomes

In growth inhibition assays, cell fate outcomes are binary,
meaning that a drug does or does not alter live cell numbers
compared to control conditions over time from the sum of cell
divisions, arrests, and deaths. Thus, conventional preclinical
drug development assays generate one EC50 curve to fit a
binary outcome. By contrast, QPI yields three cell fate groups
(groups 1–3) with qualitatively distinct outcomes available for
quantification. Therefore, instead of analyzing total live cell
numbers, we generated two dose–response curves from QPI
data. One dose–response curve corresponds to successful
bipolar divisions from drug insensitivity (Fig. 3, solid line).
The second dose–response curve describes desirable outcomes

with prolonged mitotic arrest or cell death (Fig. 3, dotted line).
We characterized these curves based on a standard log-scale
normalized response equation:

f ðxÞ ¼ 1
ð1þ 10ðx�EC50ÞÞ : ð1Þ

We next compared calculated EC50 values between drug
treatment panels (Table S1†). In particular, the ability of QPI
to identify multiple cancer cell fates enables the characteriz-
ation of mitotic inhibitors for both sensitivity, represented by
a low average EC50 value, as well as avoidance of undesirable
fates. The concentration window in which undesirable fates
occur is described by ΔEC50 = EC50,death − EC50,growth.
Therefore, QPI also enables the identification of mitotic inhibi-
tors with a low ΔEC50, indicating a small concentration
window that results in undesirable cell fates. When comparing
ΔEC50 between inhibitors and cell lines, we used normalized
value of ΔEC50/EC50,growth because relative ΔEC50 shows the
impact of concentration variance relative to the target dose of
a specific inhibitor (Table S1†). Colchicine had the smallest
relative ΔEC50, for both HeLa cells (0.35) and M202 cells (0.72)
(Fig. 3B and E). This result is consistent with previous results
showing that colchicine induces negligible or low amounts of
aneuploidy.6 Paclitaxel showed a slightly larger relative ΔEC50

for both HeLa cells (1.1) and M202 cells (2.0), due to the
increase in multipolar divisions and endocycling events com-
pared to colchicine (Fig. 3A and D). VX-680 presented by far the
largest relative ΔEC50 for HeLa cells (110) and M202 cells (17),
due to a large proportion of endocycling events (Fig. 3C and F).
Lastly, Kolmogorov–Smirnov test results show that bipolar div-
isions and prolonged mitotic arrest or cell death dose response
distributions statistically differ (Table S1†), with the exception
of M202 cells under increasing paclitaxel doses (p = 0.052).

To confirm that a wide range of VX-680 dosing generates
QPI detected endocycling, as predicted by a large ΔEC50, we
analyzed the DNA content of HeLa and M202 cells exposed to
VX-680 using flow cytometry (Fig. S5†). As an example, there
was a large increase in the number of cells with 4n DNA com-
pared to those with 2n DNA in cells exposed to 300 nM and
600 nM VX-680. A small population of HeLa cells with 8n DNA
content emerged at 300 nM VX-680 that dramatically increased
with 600 nM VX-680 (Fig. S5C–F†), in agreement with the fea-
tures of endocycling.29

Comparing EC50,growth and EC50,death to conventional EC50

from live cell counting assays

In parallel, we performed live cell counting assays for HeLa
and M202 cancer cells exposed to paclitaxel, colchicine, and
VX-680 at 24 hours and multi-day timepoints (Fig. S1 and S2†).
As anticipated, these agents markedly reduced the accumu-
lation of cancer cells at 24 hours and over 6 days (Fig. S1 and
S2†). Growth inhibition studies are the standard for drug
development, although drug effects beyond changes in total
live cell numbers were indiscernible. It is important to note
that EC50 values from live cell counting assays are defined by
concentrations at which the total number of live cells present
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in the treatment well is 50% of the total number of live cells
present in the control well. Whereas, EC50 values from QPI
analysis are defined by concentrations at which 50% of the
sampled cells in a specific treatment undergo a certain cell
fate within the first division after treatment. When compared
to QPI measured EC50 values, live cell counting EC50 values are
therefore on the same or nearest log scale, but greater than
both EC50,growth and EC50,death for paclitaxel and colchicine
treatments. However, in the case of VX-680, many endocycling
events occur that do not lead to immediate cell deaths. This
leads to large differences between EC50,growth and EC50,death

values measured by QPI. The EC50 measured by live cell count-
ing assay falls in the middle of the two on the log scale. This
result therefore indicates that the QPI EC50,growth and EC50,death

correspond differently to the standard live cell counting EC50

for different mitotic inhibition mechanisms.
We also assessed whether inhibitor dosage statistically

associates with outcome by applying chi-square tests of inde-
pendence for each cancer cell type and drug combination
(Fig. 3). Our analyses show that within each of the six cancer
cell-drug treatment pairings, cell fate outcomes were dose-
dependent. Increasing dose shifts cell fate distributions from

mostly successful bipolar divisions to mostly mitotic arrests
and deaths (p < 0.0001 for each condition) (Table S2†). For
example, HeLa cells showed a range of outcomes at lower
doses of paclitaxel and VX-680 (Fig. 3A and C). At 10 nM of
paclitaxel, a dose between the two observed QPI EC50 values, all
outcomes except endocycling occurred, with only a small
amount of endocycling appearing at slightly higher drug con-
centrations (Fig. 3A). By contrast, the majority of HeLa cells
endocycle at all VX-680 concentrations within the first 24 hours
of treatment, whereas prolonged mitotic arrest or cell death
increased in outcome frequency only at 600 nM VX-680. This
concentration is 4–12 times higher than the recommended
effective dose (50–150 nM) in vitro against thyroid and blood-
cancer cell lines (Fig. 3C),30,31 yet well within the range of mean
plasma concentration of the maximum-tolerated dose (64
mg m−2 h−1) in patients, determined in phase I clinical trial.32

Analyzing correlation between mitosis durations and cell fate
outcomes

Finally, there has been debate over whether the duration of
mitosis during anticancer drug exposure affects cancer cell
outcomes.10,33 This data is quantifiable from QPI data

Fig. 3 Cell fate distribution analysis. (A) Cell fate distribution of HeLa cells with paclitaxel exposure (n = 187). (B) Cell fate distribution of HeLa cells
with colchicine exposure (n = 380). (C) Cell fate distribution of HeLa cells with VX-680 exposure (n = 223). (D) Cell fate distribution of M202 cells
with paclitaxel exposure (n = 128). (E) Cell fate distribution of M202 cells with colchicine exposure (n = 42). (F) Cell fate distribution of M202 cells
with VX-680 exposure (n = 63). A solid line in each panel represents a dose response curve fit to the bipolar division distribution. A dotted line in
each panel represents a dose response curve fit to the prolonged mitotic arrest or cell death distribution. Numbers represent EC50 values of for each
curve. Legend shows color code for cell fate outcomes.
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showing the period from onset of mitosis to scored cell
outcomes.3,10 Single HeLa cell tracking data show that time
spent in mitosis statistically differ between cell fate outcomes
(p = 1.8 × 10−54). Multipolar divisions, cell death, or arrest are
frequent outcomes of extended mitosis time, whereas endocy-
cling usually results from shorter periods of mitosis (Fig. 4).
For M202 cells, even though the mean values of time
spent in mitosis for cell fate outcomes are statistically different
(p = 2.3 × 10−4), there is no significant trend for mitosis durations
between outcomes categories (Fig. S6†). Mitosis durations less

than 100 minutes more frequently (45% for HeLa and 34% for
M202) resolve as drug insensitivity with successful bipolar cell div-
isions compared to other fates in both cell lines (Fig. 4D and
S6D†). These data clearly reveal variability in responses to the
same mitotic inhibitor treatments from different cancer cell lines.
Thus, QPI-derived outcomes classifications reinforce the impor-
tance of studying responses in multiple cancer cell lines and
types during preclinical drug development that may correspond
to differences in personalized responses to different treatment
agents and regimens for individuals with cancer.

Discussion

Changes in cell biomass as a response indicator for screening
cancer drugs has gained traction in recent years because of
multiple technological breakthroughs.19,21,22,34–36 A common
thread in this emerging area is the increasing linkage between
biomass accumulation rates with traditional measures of drug
efficacy and preclinical outcomes of growth inhibitors in many
types of modeled malignancies. QPI methods in particular are
providing additional biophysical insights based on changes in
cell morphology during studies of cell division and cancer-
immune cell interactions.25,37 Here, we expanded the appli-
cation spectrum for quantitative phase methods by combining
biomass and morphological analyses in studies of the pharma-
codynamic characteristics of small molecule mitotic inhibitors
against two types of cancer.

We showed that during exposure to mitotic inhibitors QPI
classification into three outcome groups yields useful concen-
tration windows in which undesirable fates that include multi-
polar cell divisions and endocycling occur, as described by
ΔEC50. Cancer cells exposed to inadequate mitotic inhibitor
concentrations resolve transient cell cycle arrest by apoptosis
or ‘mitotic slippage’ to resume growth and cycling,38 which
can result in chromosome abnormalities such as aneuploidy
and tetraploidy.39 Numerical and structural chromosome aber-
rations, which often occur with multipolar cell divisions and
endocycling, may contribute to increased therapy resistance40

through a range of molecular mechanisms.7,8 Aneuploidy para-
doxically can promote or suppress tumor growth and may
cause an elevated rate of tumor recurrence by generating drug-
resistant heterogeneity with evolving growth and survival
advantages.40,41 Tetraploid cells and cells with certain chromo-
somal rearrangements act as intermediates to further chromo-
some instability and the development of aneuploidy.7

Unfortunately, tetraploidy and chromosomal aberrations that
can contribute to therapy resistance have also been linked to
mitotic inhibitor exposure at sub-lethal concentrations.6 It has
been shown that mitotic slippage occurs far more frequently
in vivo than in vitro, suggesting possible underestimation of
group 3 outcomes with QPI compared to inefficacious agents
and malignancy augmentation that may occur in patients.42

Interestingly, proteotoxic and metabolic stress are reported for
aneuploid cells,43 which may result from multipolar divisions
and endocycling events identified using our QPI methods.

Fig. 4 Cell fate responses and mitosis durations. (A) Time spent in
mitosis for HeLa single cells with colchicine exposure. The length of
each color bar indicates the amount of time spent in mitosis for that
individual cell. The color of the bar corresponds to its cell fate outcome.
(B) Time spent in mitosis for HeLa single cells with palitaxel exposure. (C)
Time spent in mitosis for HeLa single cells with VX-680 exposure. (D) Box
plot of time spent in mitosis for five cell fate outcomes. One-way ANOVA
with unbalanced sample groups was performed comparing all samples.
There are statistically significant differences between the mean values of
mitosis durations for different cell fate outcomes (p = 1.8 × 10−54).
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Inhibitor mechanisms, concentrations, and mitotic arrest
duration are major determinants of cancer cell outcomes fol-
lowing escape from mitotic arrest.33,44,45 Our QPI approach
analyzed these key characteristics for different mitotic inhibi-
tors. Because of off-target cytotoxicity, mitotic inhibitors typi-
cally have low therapeutic indices that can limit clinical
dosages43 and cause abnormal exits with viable cells contain-
ing chromosomal abnormalities.6,44 In vivo, this undesirable
outcome can occur in under-dosed or poorly perfused tumors
and potentially jeopardizes clinical outcomes by adding to
therapy resistance and tumor aggressiveness.

In vitro multi-day growth inhibition binary assays yield a
single EC50 curve that overlooks a range of potential mitotic
slippage events that add to chromosomal aberrations.
Advances in non-QPI techniques such as in vivo microscopy
and real time FUCCI imaging enable quantifying mitotic exits
for a small number of cells.46,47 Additional methods, such as
microchannel resonators, have limitations in measurement
longevity and are low throughput. Recently, QPI methods were
used to quantify cytotoxicity using area and morphological
information.13,14 Although previous QPI applications showed
results comparable to automatic cell profilers, the analysis did
not fully leverage the wealth of biophysical information cap-
tured by QPI techniques. In contrast, the QPI analysis method
presented here exposed differences in outcomes between a
microtubule-destabilizing agent, paclitaxel, a microtubule-stabi-
lizing agent, colchicine, and a cell division inhibitor, VX-680.
Our decision tree algorithm provided five cancer cell outcome
categories and three subjective groups to enable determination
of dual EC50 curves for each drug and tumor cell type examined.
For a particular drug and tumor type, the extent of EC50 value
separation, ΔEC50, predicts the likelihood of undesirable multi-
polar divisions or endocycling that can result in aneuploidy and
increased therapy resistance, providing useful concentration
ranges to avoid in which aberrant mitotic exits prevail.

We note that there is a difference between the dual EC50s
determined via QPI and the single EC50 determined via live
cell counting, especially for paclitaxel and colchicine.
Paclitaxel and colchicine induced large numbers of mitotic
arrests in the treated cell populations. While live cell counting
classifies arrested cells as live cells, the QPI data analysis
method described here does not account for arrested cells in
EC50,growth. Criteria used for a cell to be included in EC50,growth

requires that cell to successfully divide during the imaging
period. Therefore, live cell counting identified a higher pro-
portion of cells as live cells than QPI analysis did as growing
cells, producing a larger EC50 value than EC50,growth for pacli-
taxel and colchicine treatments.

QPI analyses revealed that HeLa and M202 bipolar divisions
from drug failure show the shortest mitosis periods, consistent
with previous studies in which prolonged mitotic arrest
resulted in hypersensitivity to additional death cues.33

Additional studies showed several existing chemotherapeutics
that induce apoptosis at normal dosages can trigger mitotic
catastrophe that directly lead to apoptosis at very low dosages
in aneuploid and polyploid cells.48 This can dramatically

increase chemotherapeutic tolerance in patients and hint at
effective combinatorial therapies in cancer treatments using
mitotic inhibitors. Therefore, future QPI studies include
screens for cell fate outcomes under combined exposure of
energy stressors or low dose chemotherapeutics and mitotic
inhibitors that induce aneuploidy.

Conclusions

In this study, we demonstrate a novel application of QPI in
screening and identifying aberrant cell fate outcomes as a
result of suboptimal mitotic inhibitor doses. Conventional
growth inhibition assays rely on live cell counting to generate
EC50 values that infer pharmacokinetics of mitotic inhibitors,
and fail to reveal vital information on negative effects of the
inhibitors. QPI analyzes cell fate outcome profiles, EC50,growth,
and EC50,death values that provide in-depth insights into
mechanism of action and risky dosing windows of mitotic
inhibitors. Importantly, this QPI technique is compatible with
patient derived organoids that resemble heterogeneous patient
tumors better than in vitro single cell type cultures. Screening
mitotic inhibitor cocktails on tumor organoids with QPI can
facilitate the development of next generation cancer therapies.
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