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We demonstrate a novel platform for mapping the pressure distribution of complex microfluidics networks

with high spatial resolution. Our approach utilizes colorimetric interferometers enabled by lossy optical

resonant cavities embedded in a silicon substrate. Detection of local pressures in real-time within a fluid

network occurs by monitoring a reflected color emanating from each optical cavity. Pressure distribution

measurements spanning a 1 cm2 area with a spatial resolution of 50 μm have been achieved. We applied a

machine-learning-assisted sensor calibration method to generate a dynamic measurement range from 0

to 5.0 psi, with 0.2 psi accuracy. Adjustments to this dynamic measurement range are possible to meet

different application needs for monitoring flow conditions in complex microfluidics networks, for the timely

detection of anomalies such as clogging or leakage at their occurring locations.

Introduction

Microfluidics, which emerged in the early 1980s, is now
widely used in academic research studies and in
biotechnology industry applications. Lab-on-a-chip
technologies have guided the development of devices that
integrate multiple laboratory functions, such as sample
treatment and chemical detection, on a single wafer to
achieve automation, high-throughput, and rapid
processing.1,2 Key applications include DNA sequence
analysis,3,4 biomolecule synthesis,5 drug discovery,6–8 studies
of living cell systems9–15 and point-of-care disease
diagnostics.16,17 With microfluidics manufacturing becoming
more mature, highly integrated devices can now be produced
at low-cost.18,19 When microfluidics networks scale up,
especially for systems involving pumps20 and valves,21,22 a
critical need emerges for monitoring the system to check for
working conditions at different device locations. For large-
scale, continuous-flow systems, it becomes especially crucial

to monitor flow conditions and identify operation anomalies
such as clogging23,24 and leakage25 in real time to provide
opportunities for timely mitigation, thereby ensuring smooth
operation. Hydraulic pressure is one of the most essential
parameters in all microfluidics devices since it is the driving
force of fluid flow in every region of a chip.22 Real-time
mapping of local hydraulic pressure distributions throughout
a large area with high spatial resolution would facilitate the
future design of large-scale, complex, and interconnected
microfluidics networks and also provide an in situ monitoring
function to check operating conditions of current chips.

Traditional external pressure transducers are not easily
compatible with microfluidics systems due to their bulky
sizes.26 Local pressure measurements are typically through
external tubing connections, and parallel measurements are
impractical because of the limited space available on a
microfluidics chip.27,28 Few approaches exist to provide
distributed pressure measurement functions.29–35 Electrical
methods such as an electro-fluidic circuit29,31 or a
microflotronic film30 utilize pressure-induced structure
deformation and corresponding electrical property changes
to sense the pressure in microfluidics channels. These
methods, however, suffer from low spatial resolution because
of the need for large footprint-sized sensing units to ensure
sensitivity. Optical methods that rely on monitoring the
pressure-induced movement of liquid–air32 or liquid–liquid33

interfaces have also been proposed. A major drawback of
these approaches is the need to modify existing fluidics
networks to introduce such interfaces, which greatly
complicates the design, fabrication, and operation of
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microfluidics devices. An optofluidic membrane
interferometer34 can provide high sensitivity measurements
of on-chip channel pressure through imaging the
interference fringe patterns formed at an optical cavity. To
ensure detection sensitivity, high-resolution optical images
that typically contain tens of thousands of imaging pixels are
required for a sensing unit, which limits the density of
sensing units for deployment on a chip.

Here, we present a new distributed pressure-sensing
platform based on colorimetric interferometry that can
extract pressure-mapping information from complex
microfluidics chips with high spatial resolution in a large
cross-sectional area (Fig. 1A). Our platform integrates with
microfluidics networks of arbitrary shapes without a need to
modify the original microfluidics structure design. Channel
pressure at different locations is detected by monitoring the
reflected color composition of corresponding mirrors

through a common optical microscope (Fig. 1B and C). Each
pressure sensing unit consists of a lossy optical resonant
cavity formed by a thin air gap sandwiched between a
transparent silicon dioxide mirror suspended on an elastic
membrane and a reflective silicon substrate. When the local
fluid pressure applied on a mirror changes, it changes the air
gap thickness, the light interference condition, and the
reflected color composition (Fig. 1D and E).

Methods
Device fabrication

The device is fabricated using a combination of standard
silicon-based microfabrication and PDMS-based
heterogeneous integration processes.36 It can be summarized
into three major steps: (1) a thin PDMS film is prepared by
spin coating (4000 rpm, 5 min) and baked inside an oven at
65 °C until cure to achieve a final thickness of 6 μm. This
PDMS film is laterally peeled and attached temporarily onto a
hybrid glass–PDMS buffer. (2) A 1.5 μm thick thermally
grown silicon dioxide layer is patterned into a disk array and
the silicon substrate underneath is isotropically etched to
form thin needle-shaped anchors under these disks. These
silicon dioxide disks are then permanently bonded to a thin
PDMS film through oxygen plasma treatment (80 W, 500 mT,
30 s) and oven baked for 2 hours at 65 °C. Then, the whole
sample is immersed in a water/acetone (1 : 1 v/v ratio)
ultrasonic bath to break the silicon anchors and transfer the
disk array. (3) Another silicon substrate with the same
thickness of thermal oxide goes through another step of
plasma-enhanced chemical vapor deposition (PECVD) to add
an extra 550 nm oxide thickness to define the initial air gap
spacing. An array of wells is etched out to accommodate the
oxide disk array. Finally, this substrate is align-bonded with
the thin PDMS film mounted with an array of oxide disks to
form the optical cavities, and finally, the hybrid buffer is
peeled off. The device can go through an optional prolonged
oxygen plasma treatment (80 W, 500 mT, 7 min) to create a
thin silica-like layer on top of the PDMS surface to help block
the penetration of water vapor to extend the device operation
lifetime under a high hydraulic pressure environment.37,38

More fabrication details are illustrated in Fig. S1.†

Imaging setup

An upright microscope (Zeiss Axio Scope A1) is used to image
the device with a 10× objective lens (N.A. 0.25). The
broadband white light illumination source is from a halogen
lamp (HAL 100) attached to the microscope. A color CMOS
camera sensor (Grasshopper GS3-U3-41C6C-C) is attached to
the microscope to capture images for analysis. The camera is
set to have a fixed exposure time of 0.35 ms. All image
preprocessing functions on this camera are turned off, and
exported images are in the raw file format to prevent
information loss.

Fig. 1 A distributed pressure-sensing platform based on a colorimetric
interferometer array. (A) Schematic of a pressure-sensing platform based
on a colorimetric interferometer array. Local hydrodynamic pressure in a
complex fluidics network is obtained in real-time by detecting the
reflected light color from a corresponding optical cavity. (B) and (C) Two
schematics of the cross-section of an individual sensor unit. The unit
consists of a thin PDMS membrane that deforms under fluid pressure. The
SiO2 mirror suspended below the membrane and the Si substrate forms
an air cavity that functions as a lossy optical resonator. When the fluid
pressure above the PDMS membrane changes, the air gap spacing also
changes to result in a shift of the reflected optical spectrum. Through
detecting the color composition of each cavity, the local fluid pressure
above the mirror is measured. (D) and (E) Example microscopy images
detected from two sensor units along a fluid channel, one at the upstream
high-pressure region (green color) and the other at the downstream low-
pressure region (red color).
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FDTD simulation and numerical calculation

The numerical simulation is conducted using a commercial
FDTD software (RSoft) based on a single unit of optical cavity.
The model is simplified to a 2D cross-sectional study with
periodic boundary conditions on two sides. Material
properties are set accordingly to the built-in refractive index
library. An emitter sends optical waves vertically into the
cavity and a receiver behind the emitter measures the
reflected power. We run parametric sweep on the wavelength
of light and air gap thickness to generate the reflectance
spectra in Fig. 2A. To compute the color transition in Fig. 2D,
we adopted the illumination spectrum of the halogen lamp
(Fig. S2†) measured by a commercial spectrometer (Ocean
Optics HL-2000-HP), and the camera sensor color sensitivity
spectra (Fig. S3†) in the specification manual provided by the
manufacturer.

Pressure and flow rate control

A precision pressure regulator (Marsh Bellofram
510PI0G015P0100 Digital Pressure Regulator) is used to
control the pressure output during calibration experiments.
The regulator takes a 20 psi compressed air as input and
regulates the pressure output within the range of 0 to 15 psi

based on the voltage control signal from 0 to 10 V using a DC
power supply (Gw Instek GPS-3303), and has a built-in digital
display for pressure readout. It can maintain a stable
pressure output with <0.1 psi fluctuation using feedback
control. Pressure levels from 0.2 psi to 5 psi with a step of 0.2
psi are tested. At each pressure level calibration is repeated
multiple times by taking 45 consecutive images with 100 ms
interval and fixed 0.35 ms exposure time.

A syringe pump (Harvard PHD 2000 Infusion) is used to
control the flow rate during pressure mapping
demonstration. A syringe (BD 10 ml, Luer-Lok) filled with DI
water is mounted onto the pump to supply a continuous flow
into the microfluidic network through tubing connection.
Various flow rates from 0.25 ml h−1 to 2 ml h−1 with a step of
0.25 ml h−1 are tested. After each flow rate adjustment, we
wait for at least 10 min in order to let the flow stabilize and
reach steady state.27 Then images are captured at several
locations inside the microfluidic network to map out the
pressure distribution. For each flow condition, the
measurement is repeated multiple times by taking 45
consecutive images with 100 ms time interval and fixed 0.35
ms exposure time.

Image processing

Each measurement consists of 45 still images with minimal
relative movement. We take the first frame from each
measurement to find the center coordinates of pressure
sensing spots of interest and assume them to remain the
same for following frames. Scikit-image, an open-source
image processing library for the Python programming
language,39 together with customized codes are used to
extract the hue and saturation readings. Each color spot
actually contains more than 100 pixels in the image. To
improve accuracy, we don't include pixels close to object
edges, and thus limit our calculations to pixels within a ring-
shaped area whose inner circle is 3 pixels away from the spot
center and outer circle 3 pixels away from the spot edge,
leaving us about 40 pixels for each spot with plenty of
redundancy. The hue and saturation readings for these pixels
are averaged such that each spot ends up having one hue
reading and one saturation reading in a single frame of
image. Therefore 45 images provide 45 times of
measurements for each pressure level calibration experiment.
Since there are 25 pressure levels sampled between 0.2 psi to
5 psi every 0.2 psi, we append these measurements together
to form a calibration dataset consisting of 1125 data points
in total and provide the basis for regression analysis of one
measurement spot. Each calibration data point has the hue
and the saturation readings, and is associated/labeled with a
pressure level somewhere between 0.2 psi to 5 psi.

Regression analysis and pressure prediction

For each measurement spot we have 1125 calibration data
points based on which we perform a regression analysis
between the color attributes and the pressure level as a

Fig. 2 Working principle. (A) Numerical simulation of the reflectance
spectra in the visible light range as a function of air gap thickness. (B)
The reflectance spectra at three selected air gap thicknesses extracted
from (A) to show that the wavelengths at which minimum reflection
occurs matches the analytical analysis results. (C) Cone plot of the HSV
(hue, saturation, value) color model. Different perceived colors (red,
blue, green, etc.) are represented by different degrees of hue. Different
levels of colorfulness are represented by saturation on a scale from 0
to 1. The brightness of a color is represented by the parameter value.
(D) Plot of reflected colors in terms of their saturation and hue values
at different air gap thickness. We calculate colors by integrating the
product of light source intensity, device reflectance, and camera pixel
sensitivity over the range of the visible light wavelength spectrum.
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way of nonlinear sensor calibration. Fig. 4A serves as the
data visualization and inspires us to try out two
regression models: parametric polynomial regression and
non-parametric kNN regression. Scikit-learn, an open-
source statistical learning library for the Python
programming language,40 is used for the regression
analysis and establish the relationship between color
attribute readings and the pressure level. To select the
optimal parameters, namely the highest degree in
polynomial regression and the number of neighbors in
kNN regression, we used leave-one-out cross-validation
(LOOCV) to evaluate the model performance with mean
absolute error as the evaluation metric. After establishing
the relationship and saving the model, we are able to
make pressure prediction based on the color of a
measurement spot by extracting the hue and saturation
readings as inputs and correlating them to a pressure
level.

Results and discussion
Working principle

The optical wavelength-selective reflection response of an air
cavity originates from its role as a lossy optical resonator.
Light rays reflected at the SiO2/air interface interfere with
those reflected at the air/Si interface. Little reflection is
detected at the mirror when the wavelength of light satisfies
the destructive interference criterion in the reflection
direction

2t = nλ, n = 1, 2, 3, …

λ ¼ 2t; t;
2
3
t;…

where t is the air gap thickness and λ is the wavelength of

light. Light of these wavelengths enter the cavity, bounce
back and forth, and eventually become absorbed by the
silicon substrate. However, when the wavelength of light
satisfies the constructive interference criterion,

2t ¼ nþ 1
2

� �
λ; n ¼ 0; 1; 2;…

λ ¼ 4t;
4
3
t;
4
5
t;…

Fig. 3 Pressure calibration. (A) Schematic of the experimental setup
for calibrating the relationship between pressure and air-gap sensor
color response. A microfluidics channel was bonded on top of our
colorimetric pressure-sensing platform for this calibration test. The
assembled platform was placed under a standard upright microscope
with a 10× objective lens for imaging. For pressure calibration the
exhaust outlet was sealed to form a closed chamber. (B–D)
Microscopic images showing different colors captured at different
pressure levels. (E) Experimentally measured colors at different
pressure levels are plotted in terms of their saturation and hue values.
Each data point on the plot is the average result of 27 sensing units.
Each one is measured 45 times at each pressure level with error bars
representing the standard deviation.

Fig. 4 Nonlinear sensor calibration with experimental data. (A) Plot of
saturation and hue readings corresponding to pressure levels from 0
to 5 psi. (B) The goodness of fitting by applying the polynomial
regression to the dataset. The fitted value is given by the model based
on saturation and hue readings as input and plotted against the actual
value as reference. (C) The goodness of fitting by applying the kNN
regression to the dataset. (D) Generalized model performance
evaluated by using the leave-one-out cross-validation method. Each
point represents the difference between the actual pressure of one
test and the predicted pressure.
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strong light reflection occurs. These wavelengths of light

constitute the final color spectrum captured by a camera
from each corresponding cavity. Numerical simulation using
the finite-difference time-domain (FDTD) method calculates
the reflectance spectra from an optical cavity in the visible
light range (Fig. 2A). In our device, the initial air gap
thickness t0 was designed to be ∼600 nm, and the target
operation range was set to be less than 300 nm for optimal
operation in the visible light range. We selectively plotted the
reflectance spectra for gaps at 500 nm, 420 nm, and 360 nm
(Fig. 2B). Wavelengths at which minimum reflectance occurs
are close to 500 nm, 420 nm and 720 nm, respectively, which
aligns with the above analytical analysis based on light
interference principles.

To calculate the reflection spectrum detected by the
imaging system, we consider three main factors, the light
source spectrum, the reflection spectrum from an air cavity,
and the reception of the image sensor. To compute the colors
perceived by the image sensor, we first adopt the RGB color
model by calculating the value of each component with the
following set of equations

R ¼
ð∞
0
I λð ÞS λð Þr λð Þdλ

G ¼
ð∞
0
I λð ÞS λð Þg λð Þdλ

B ¼
ð∞
0
I λð ÞS λð Þb λð Þdλ

where I(λ) is the illumination spectrum of the light source

measured by a spectrometer (Fig. S2†), S(λ) is the reflectance
spectrum of our device obtained from the FDTD numerical
simulation, and r(λ), g(λ), b(λ) are the spectral sensitivities of
red, green, and blue pixels of the image sensor provided by
the manufacturer (Fig. S2†). We sampled the spectral data
points every 20 nm and calculated the RGB intensities
perceived by the image sensor at different air gap
thicknesses. The results, however, indicated that the change
of red (R) and green (G) channels closely follow each other,
and the blue (B) channel signal is weak. Furthermore, the
readings of RGB channels are subject to scale simultaneously
when the light intensity and exposure time fluctuates. These
factors strongly suggest that the RGB color index is not ideal
for quantifying the relationship between the reflection
spectra and air gap spacing. Therefore, we turned to an
alternative HSV (hue, saturation, value) color index that
decouples brightness (value) from color (hue and saturation)
attributes (Fig. 2C). In the HSV color index, hue is the
attribute of human perceived color, such as red, yellow,
green, and blue. The hue parameter is typically represented
by the angle degree of a rainbow wheel. For example, red is

at zero degrees, green at 120 degrees, and blue at 240
degrees. Saturation is the attribute representing pureness of
a color, and value is the attribute representing the brightness
of a color.41 The hue and saturation attributes provide the
spectrum components of a color, and therefore are ideal
parameters for characterizing the relationship between the
spectrum change and the air gap spacing. The indices of the
RGB model can be converted to the HSV model based on the
following formula:

H′ ¼

G −B
maxchannel − minchannel

þ 0
� �

=6; if max ¼ R*

B −R
maxchannel − minchannel

þ 2
� �

=6; if max ¼ G

R −G
maxchannel − minchannel

þ 4
� �

=6; if max ¼ B

8>>>>>>><
>>>>>>>:
*if H′ is less than 0 then add 1 to H′

H = H′ × 360°

S ¼ maxchannel − minchannel

maxchannel

V = maxchannel

After converting to the HSV color model, we observed that
the change of the value channel is much smaller than the
hue or saturation channels when the air gap thickness varies.
In addition, the hue and saturation channels are more
resistant to potential light intensity fluctuations. Both of
these desirable features corroborate our choice to use the
HSV model and examine the hue and saturation channels for
quantifying the relationship between color composition and
air gap thickness. In Fig. 2D is a simulation result showing
the relationship between air gap thickness and saturation
and hue values. There is a trend of clockwise progression on
the hue–saturation plot when the air gap thickness decreases
from 560 nm to 380 nm.

Machine-learning-assisted multivariant nonlinear sensor
calibration

To validate the results predicted from the above theoretical
analysis and numerical simulation, we performed calibration
experiments with a fabricated device under a microscope
(Fig. 3A). A microfluidics channel was bonded on top of the
device and filled with water as the pressure-transmitting
medium. Pressure was supplied by a pressure regulator with
built-in digital calibration. The regulator provides a stable
pressure output with fluctuations less than 0.1 psi. We
sampled the pressure level from 0 to 5 psi with 0.2 psi
intervals. Each pressure level measurement was repeated 45
times. Images were captured using a color CMOS sensor at
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different pressure levels to demonstrate the color transition
effect (Fig. 3B–D). The hue and saturation values from the
pixels of a corresponding cavity were extracted and averaged.
The results measured at different pressure levels were
compiled into one plot (Fig. 3E). The trend of clockwise
progression on the hue–saturation plot when the pressure
level increases, which causes the air gap to decrease, matches
well with our simulation results shown in Fig. 2D.

In order to establish the correlation between hue and
saturation readings and the actual pressure level in the
microfluidics channel, we formulate the problem as a

multivariate nonlinear sensor calibration using the
experimental calibration data (Fig. 4A). Statistical learning
methods have been previously applied to such nonlinear
sensor calibration problems.42–45 Here, we explore the
applications of two models, (1) polynomial regression and (2)
k-nearest neighbors (kNN) regression, to fit the experimental
data and build a model that can reliably predict the pressure
level based on hue and saturation readings. Polynomial
regression, as a commonly used parametric curve fitting
method, fits a nonlinear relationship between independent
variable X and dependent variable Y by statistically

Fig. 5 Mapping pressure distribution in a complex microfluidics network. (A) Design of a complex microfluidics network spanning a 8 mm × 5 mm
cross-sectional area. The example images are for a flow rate of 0.25 ml h−1 at (i) inlet, (ii) middle, and (iii) outlet positions of the microfluidics
network. These three regions show different colors that represent different pressure levels. (B–D) Hue–saturation plots for flow rates between 0.25
and 2 ml h−1 at inlet, middle, and outlet network locations. Each data point represents measurements from 9 sensing units at each location. (E)
Measured relationships between pressure and flow rates at inlet, middle, and outlet network locations. Each data point represents data from 9
sensing units at each location. (F) Pressure distribution at 0.8 ml h−1 flow rate mapped throughout the entire microfluidics network.
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estimating Y to be a linear combination of X and its higher-
degree terms. The goodness of fitting largely depends on the
wise choice of X and proper order of the highest degree.
Seeing the clear clockwise progression from visualizing data
points in a 2D plot with respect to the hue and saturation
readings (Fig. 3E), we first calculated the mean for all hue
and saturation readings and used that center point as a new
origin. Then, the vector of a data point is defined as the one
connecting the new origin and the data point itself. The
vector of the very first calibration data with the lowest
pressure level was taken as a reference vector, and we chose
X to be the clockwise directional angle between any data
vector and the reference vector. With the proper choice of the
highest degree, we can fit relatively well on the whole set of
calibration data (Fig. 4B).

The k-nearest neighbors regression, which is a non-
parametric technique,46 predicts the value of Y based on a
similarity measure between a new measurement and all the
existing calibration data. Accuracy is usually affected by the
choice of distance function as a measure of similarity, and
the choice of how many neighbors examined. We chose the
Euclidean distance between data points as the similarity
measurement and achieved a fitting even better than the
polynomial regression method for the whole calibration data
(Fig. 4C). To further evaluate the generalized model
performance when encountering new measurements in the
future and prevent overfitting, we performed leave-one-out
cross-validation (LOOCV) using the calibration dataset
(Fig. 4D). The kNN regression showed superior performance
with lower median error and narrower error variation. The
absolute error was less than 0.2 psi as shown by the outlier
with the largest error. With a denser pressure calibration
interval used, the error from the kNN regression model can
ultimately reduce down to the precision of the pressure
regulator used for calibration.

Pressure mapping inside a complex microfluidics network

Using the prediction model built by the kNN regression
method, we mapped the hue and saturation values to the
pressure applied on top of an air cavity. As a potential
application, we apply this distributed pressure-sensing
platform to map the pressure distribution inside a complex
microfluidics network (Fig. 5A). We fabricated the
microfluidic channels using a soft lithography method and
bonded it to our platform. The microfluidics network spans
an area of 8 mm × 5 mm and is covered by more than 10 000
pressure-sensing units evenly distributed with a 50 μm pitch.
A flow-rate-controlled syringe pump was used to drive water
through the network at different flow rates. After flow
stabilization, color images were captured at the inlet, middle
and outlet areas of the network in order to map pressures in
these zones. Since pressure drops from the upstream inlet to
the downstream outlet in a continuous flow, different regions
exhibit different colors (Fig. 5A). At each location, we
repeated the measurements by taking multiple image frames

under steady state flow conditions. Each image contained
more than one hundred pressure-sensing spots. As a
demonstration, we cropped the images and evaluated the
same spot in each area under different flow rates. The hue
and saturation readings from these spots were extracted and
plotted (Fig. 5B–D). With the previous calibration data and
kNN regression modeling, we measured the pressure at
different locations under different flow rates (Fig. 5E).
Pressure drops between any two spots can be simply
calculated and used to monitor flow conditions. When the
change is from an overall flow rate adjustment, we expect the
pressure drop at different regions to change simultaneously
and proportionally. However, when the change is from
anomalies, such as clogging or leakage at some locations, our
distributed multispot pressure-sensing platform should
detect regions showing an abnormality by plotting the
pressure distribution map. Fig. 5F shows an example of a
pressure distribution map for an entire complex
microfluidics network used in our study. The experimental
result agrees well with the pressure distribution obtained
from numerical studies as shown in Fig. S4.†

Discussion

A dynamic, real-time map of pressure distribution inside a
microfluidics network can provide vital information about
network operating conditions. Although there has been effort
to develop microfluidics pressure sensors, a platform
providing high spatial resolution pressure mapping for large-
scale microfluidics networks is not yet available. Here, we
demonstrate a distributed color interferometry-based
pressure-sensing platform with more than 10 000 pressure
sensing spots spanning a 1 cm2 cross-sectional area with 50
μm spatial resolution. We used a 10× objective lens for
imaging. Each silicon dioxide mirror provides ∼40 imaging
pixels in a total image. Silicon dioxide has a Young's modulus
of 70 GPa, which is nearly 5 orders of magnitude larger than
the surrounding PDMS structure. On one hand, the
supporting silicone dioxide from the substrate firmly anchors
PDMS film and effectively decouples the mechanical
responses of neighboring sensing spots when separated 50
μm apart (Fig. S5†). On the other hand, each silicone dioxide
mirror remains rigid and flat during the pressure-sensing
process. All optical pixels corresponding to an individual
silicon dioxide mirror show nearly identical color
compositions and change simultaneously when the PDMS
membrane deforms and an air cavity changes thickness. In
principle, a single optical pixel is sufficient for measurement
at each spot in a microfluidics network. This suggests that
concurrent monitoring of dynamic pressure changes over a
large area microfluidics network is feasible with a lens for a
larger field of view, as long as there is at least one optical
pixel to cover each mirror.

In our platform, each mirror sensing unit functions
independently as a local pressure sensor. It can provide the
local pressure measurement even when neighbouring sensing
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units fail. Defect sensing mirrors represent dead pixels on a
pressure map. If the dead pixels are sparsely distributed and if
the local pressure spatial variation rate is smaller than the pixel
resolution, pressure measured by neighbouring sensing units
can be used to linearly fit and estimate the pressure at the
missing pixels. If the defect pixels are clustered together, such
fitting approaches may not work if the cluster sizes are large.

The majority defects on our platform belong to the second
type in which dead mirrors typically cluster in certain
regions. Majority areas have good mirror array without dead
pixels. The pressure map shown in Fig. 5(F) shows a pressure
map with this type of defect. The regions with white colors
are where these defect mirrors are located. The overall
manufacturing yield currently achieved is ∼80%. The causes
of these fabrication defects mainly come from the bonding
equipment. Since the bonding process involves transferring a
thin PDMS film onto any array of SiO2 microwells, the tilting,
the bonding pressure uniformity, and the alignment of these
surfaces across a large area is critical. Further improvements
of device fabrication yield can be achieved with better
alignment-bonding apparatus.

We designed an operational air gap spacing to be within a
range of 300–600 nm for highest color performance and
transition contrast. This range of deformation should have
minimal impact on flow conditions for typical microfluidic
channel height spanning across tens to hundreds of microns.
For the specific mechanical design in our demonstration, the
measurable pressure range was between 0–5 psi. This
dynamic sensing range can be tuned by changing the
thickness of the PDMS membrane or adjusting its chemical
composition to tune its Young's modulus.

The demonstrated distributed pressure sensing platform
can have broader applications than pressure sensing in a
fluidic network. The key feature of our platform is the high-
density distributed pressure sensing units. Such units do not
necessarily need to integrate with a fluid channel, and can be
modified for different applications. For example, if a group
of single cells are properly arrayed and aligned on these
pressure sensing units, by integrating a rigid and transparent
mechanical stamp, it is possible to measure in parallel single
cell mechanics properties through monitoring the
displacement of the stamp and the corresponding
displacement of each sensing unit to know the applied force
and the deformation of each single cell. In another example,
if a slice of tissue layer is placed on top of this distributed
sensor platform and gently squeezed, the pressure sensor
array can map out stress distribution to provide clues of
stiffness distribution of a sheet of tissue sample.

Conclusion

We designed and demonstrated a high spatial resolution,
high sensitivity, large area pressure-sensor platform. With an
optimized computation framework, monitoring flow
conditions inside a complex microfluidics network in real-
time is possible, with fully mapped pressure distribution to

detect anomalies such as clogging or leakage at any network
location. As a massively parallel pressure-sensing substrate
by itself, this platform may also have broad potential utility
in fields outside of microfluidics, such as mechanobiology
that studies the relationship between mechanical properties
and biological phenomena, such as cell proliferation, growth,
and differentiation.47–50
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