Fast Imaging Trajectories: Non-Cartesian Sampling (2)

M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2021.05.04

Department of Radiological Sciences David Geffen School of Medicine at UCLA

Class Business

- Homework 2 due 5/7 Fri
- Final project
 - Proposal due 5/10 Mon can send us a draft to get feedback

Outline

- Spiral Trajectory
- Non-Cartesian 3D Trajectories
 - 3D stack of radial
 - 3D radial
 - 3D cones
- Non-Cartesian Image Reconstruction
 - Gridding reconstruction
 - Gradient measurement
 - Off-resonance correction

Spirals

"THE" non-Cartesian trajectory

Highly robust to motion/flow effects

Very fast!

- optimal use of gradients in 2D
- can acquire one image in ~100 ms

Spirals: Sampling Requirements

N interleaves 2 $k_{r,max} = 1 / dx$ dk = 1 / FOV

Design 1 interleaf and rotate

Subject to HW limits

Spirals: Gradient Design

Gradients vs. time

time (ma)

Spirals: Image Reconstruction

Gridding Algorithm

Spirals: Image Reconstruction

Spirals: Image Reconstruction

Follow with 2D Fourier Transform ...

Spirals: Gradient Delays

2 sample delay 1 sample delay

calibrated

Spirals: Off-Resonance Effects

Nintlv = 8Nintlv = 16Nintlv = 48 $T_{rd} = 26.67 \text{ ms}$ $T_{rd} = 13.41 \text{ ms}$ $T_{rd} = 4.61 \text{ ms}$

Spirals: Practical Considerations

Trajectory design

Gradient waveform calibration

k-Space density compensation

Off-resonance correction

Fat suppression

Gridding reconstruction

applies to non-Cartesian MRI in general

Spirals: Pros and Cons

<u>Pros</u>

- Very fast (up to single shot)
- Very short TE
- Robust to motion/flow effects

<u>Cons</u>

- May have mixed contrast
- Sensitive to gradient delays
- Sensitive to off-resonance effects

Spirals: Real-Time Cardiac MRI

- Healthy subject; 1.5 T; 8-ch array
- Golden-angle ordering
- Spiral 2D GRE; 8-mm slice
- Spatial resolution = 1.6 mm
- SPIRiT recon with R = 2
- 40 cm, 1.6 mm
- 250x250 matrix @ 6 fps
- 12-fold reduction in #TRs (vs. 2DFT)
- 8-TR sliding window display (16 fps)

Spirals: 3D LGE MRI

3D Spiral IR-GRE

- 6-interleaf VD spiral
- 7.5-ms readout
- 90 x 90 x 11 matrix
- outer volume suppr
- water-only RF exc
- TR = 15.48 ms
- 8-HB BH scan

 $\frac{\text{Reconstruction}}{-\text{SPIRiT}(R=2)}$ $- \sim 5\text{-sec recon}$

courtesy of Joelle Barral & Juan Santos (HeartVista)

3D Non-Cartesian Sampling

3D Stack of Stars 3D Stack of Rings

3D Cones

and much more ...

3D Stack-of-Radial

aka Stack-of-Stars

<u>Pros</u>

- Straightforward extension of radial
- Robust to motion
- Can tolerate a lot of undersampling Cons
- May have mixed contrast
 - Sensitive to gradient delays
 - Sensitive to off-resonance effects

3D Stack-of-Radial: Liver MRI

3D Cartesian MRI

Insufficient breath-holding

Free-breathing 3D Stack-of-Radial MRI

Axial

Coronal

Sagittal

courtesy of Tess Armstrong

3D Radial

<u>Pros</u>

- Robust to motion (get DC every TR)
- Can tolerate a lot of undersampling
 - Half-spoke PR has very short TE

<u>Cons</u>

- May have mixed contrast
 - Sensitive to gradient delays
 - Sensitive to off-resonance effects

image from <u>http://en.wikipedia.org/wiki/Koosh_ball</u>

3D Radial: Coronary MRA

Contrast-Enhanced MRA at 3.0T

ECG-gated, fat-saturated, inversion-recovery prepared spoiled gradient echo sequence (1.0 mm)³ spatial resolution, 1D self navigation, CG-SENSE recon, 5.4 min scan time

courtesy of Debiao Li and J Pang (Cedars-Sinai)

3D Cones

<u>Pros</u>

- Very fast (3-8x vs. Cartesian)
- Very short TE
 - Flexible readout length
 - Robust to motion/flow effects
- <u>Cons</u>
 - May have mixed contrast
 - Sensitive to gradient delays
 - Sensitive to off-resonance effects

Gurney PT et al., MRM 2006; 55: 575-82

3D Cones: Coronary MRA

Multi-Phase Thin-Slab MIP Reformats

Wu HH et al., MRM 2013; 69: 1083-1093

3D Cones: Hi-res CMRA

Thin-Slab MIP Reformats: 0.8 mm isotropic

Addy NO, et al., MRM 2015; 74:614-621

Non-Cartesian Image Reconstruction

- Gridding reconstruction
- Gradient measurement
- Off-resonance correction

MRI Signal Equation

$$s(t) = \iint_{X,Y} m(x,y) \cdot \exp(-i2\pi \cdot [k_x(t) x + k_y(t) y]) \, \mathrm{d}x \, \mathrm{d}y$$
$$= \mathcal{FT}(m(x,y)) = M(k_x(t), k_y(t))$$

General definition of k-space:

$$k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) \,\mathrm{d}\tau, \quad k_y(t) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) \,\mathrm{d}\tau$$

MRI Reconstruction

$$m(x,y) = \mathcal{FT}^{-1}(M(k_x,k_y))$$
$$m(x,y) = \iint_{k_x,k_y} M(k_x,k_y) \cdot \exp(i2\pi \cdot [k_x x + k_y y]) \, \mathrm{d}k_x \, \mathrm{d}k_y$$

simple for Cartesian (k_x , k_y) to Cartesian (x, y): 2D FFT

time consuming for non-Cartesian (k_x, k_y) to Cartesian (x, y)

Non-Cartesian Reconstruction

- Inverse Fourier transform
 - aka conjugate phase reconstruction
- Gridding (+FFT)¹
 - grid driven interpolation
 - data driven interpolation (more popular)
 - forward and reverse (inverse)
- Non-uniform FFT (NUFFT)²
- Block Uniform ReSampling (BURS)³

¹ O'Sullivan JD, IEEE TMI 1985; 4: 200-207

² Fessler JA et al., IEEE TSP 2003; 51: 560-574

³ Rosenfeld D, MRM 2002; 48: 193-202

Gridding: Basic Idea

convolve each acquired data point with kernel $C(k_x, k_y)$ resample the convolution onto Cartesian grid points 2D inverse FFT; de-apodization and FOV cropping

Gridding: Basic Math

Sampling pattern: $S(k_x, k_y) = \sum_{j}^{2} \delta(k_x - k_{x,j}, k_y - k_{y,j})$ Convolution kernel: $C(k_x, k_y)$ Grid: $III(\frac{k_x}{\Delta k_x}, \frac{k_y}{\Delta k_y})$

Gridding recon:

 $\hat{M}(k_x, k_y) = \begin{bmatrix} (M(k_x, k_y) \cdot S(k_x, k_y)) * C(k_x, k_y) \end{bmatrix} \cdot \underbrace{\text{III}(\frac{k_x}{\Delta k_x}, \frac{k_y}{\Delta k_y})}_{\text{non-Cartesian dataset}} \text{ interpolation } \underbrace{\text{resample to grid}}_{\text{resample to grid}}$ $\hat{m}(x, y) = \begin{bmatrix} (m(x, y) * s(x, y)) \cdot c(x, y) \end{bmatrix} * \underbrace{\text{III}(\frac{x}{\text{FOV}_x}, \frac{y}{\text{FOV}_y})}_{\text{remove by deap}} \text{ remove by cropping}$

Gridding: Design Issues

- Convolution kernel
 - apodization; aliasing
- Sampling grid density (Cartesian)
 - aliasing
- Sampling pattern (non-Cartesian)
 - impulse response and side lobes
 - density characterization / compensation

Ideal convolution kernel: SINC

- don't need de-apodization
- infinite extent impractical to implement
- windowed version has limited performance
- Desired kernel characteristics
 - compact support (finite width) in k-space
 - minimal aliasing effects in image (sharp transition)

Combine with grid oversampling

$$\Delta k_x = \frac{1}{\text{FOV}_x}, \Delta k_y = \frac{1}{\text{FOV}_y}$$
$$\frac{\Delta k_x}{\alpha} = \frac{1}{\alpha \text{FOV}_x}, \frac{\Delta k_y}{\alpha} = \frac{1}{\alpha \text{FOV}_y} \qquad \alpha > 1$$

$$\hat{M}(k_x, k_y) = \left[\left(M(k_x, k_y) \cdot S(k_x, k_y) \right) * C(k_x, k_y) \right] \cdot \operatorname{III}\left(\frac{k_x}{\Delta k_x / \alpha}, \frac{k_y}{\Delta k_y / \alpha}\right)$$
$$\hat{m}(x, y) = \left[\left(m(x, y) * s(x, y) \right) \cdot c(x, y) \right] * \operatorname{III}\left(\frac{x}{\alpha \operatorname{FOV}_x}, \frac{y}{\alpha \operatorname{FOV}_y}\right)$$

Combine with grid oversampling

 α = 2 very forgiving; many kernels work well; apodization minimal expensive ... especially for 3D gridding

Jointly consider *α* and kernel

- minimize aliasing energy
- characterize trade-offs
- numerical designs possible
- Kaiser-Bessel window works very well, with proper choice of β and $kw^{1,2}$; precompute a lookup table to speedup calculations²

$$C_{KB}(k_x) = \mathbf{I}_0 \left(\beta \sqrt{1 - (\frac{k_x}{kw/2})^2}\right)$$

¹Jackson et al., IEEE TMI 1991; 10: 473-478 ²Beatty et al., IEEE TMI 2005; 24: 799-808

Gridding: Design - Density

Sampling density of S(k_x, k_y) not uniform: $ho(k_x, k_y)$

Pre-compensation of sampling density:

$$\hat{M}(k_x, k_y) = \left[(M(k_x, k_y) \cdot \frac{S(k_x, k_y)}{\rho(k_x, k_y)}) * C(k_x, k_y) \right] \cdot \text{III}$$

density corrected on a data point basis before convolution need to know $\rho(k_x,k_y)$

from geometrical analysis, numerical analysis (Voronoi), etc. inverse of ρ known as the density compensation function (DCF)

Gridding: Design - Density

Post-compensation of sampling density:

$$\hat{M}(k_x, k_y) = \frac{\left[\left(M(k_x, k_y) \cdot S(k_x, k_y) \right) * C(k_x, k_y) \right] \cdot \text{III}}{\rho(k_x, k_y)}$$

density corrected on a grid point basis after convolution can estimate ρ along with gridding; grid all 1s:

$$\hat{\rho}(k_x, k_y) = [S(k_x, k_y) * C(k_x, k_y)] \cdot \text{III}$$

may be okay if S changes slowly

... but only an approximation and fails when S changes rapidly

Radial trajectory [256x256] with ramp DCF

Kaiser-Bessel convolution kernel with linear lookup table¹

α = 2; grid size = 2x[256 256]; kw = 4;

¹Beatty et al., IEEE TMI 2005; 24: 799-808

Gridded data on [512x512] grid

Inverse 2D FFT produces image with 2x FOV

Deapodization function is FT of KB convolution kernel

Deapodized image

FOV cropped to extract desired [256x256] image

 α = 2, kw = 4

FOV cropped to extract desired [256x256] image

 α = 1.375, kw = 5¹

¹Beatty et al., IEEE TMI 2005; 24: 799-808

Gridding: Summary

• Data input

- k-space data
- k-space traj (usually normalized), DCF
- Gridding params
 - target image dimensions [MxN]
 - grid oversampling factor α
 - kernel type and width
- Data output
 - gridded Cartesian k-space
 - reconstructed image

- Non-Cartesian recon requires
 - k-space trajectory
 - density compensation function
- Both depend on actual gradient waveforms on scanner
 - can deviate from desired
- Knowledge of k-space trajectory also important for RF design

Gradient imperfections cause artifacts

- FOV scaling, shifting
- signal loss, shading
- image blurring, geometric distortion
- Sources of gradient errors
 - eddy currents (B₀, linear)
 - group delays (RF filters, A/D)
 - amplifier limitations (BW, freq response)
 - gradient warping
 - other ...

- General techniques
 off-iso slice technique^{1,2}, and more
- Trajectory-specific techniques
 - radial³, spiral⁴, and more
- Characterize gradient system
 assume linear time-invariant model⁵

Duyn JH et al., JMR 1998; 132: 150-153
 4 Robison RK et al., MRM 2010; 63: 1683-90
 2 Beaumont M et al., MRM 2007; 58: 200-205
 5 Addy NO et al., MRM 2012; 68: 120-129
 3 Peters DC et al., MRM 2003; 50: 1-6

Off-isocenter slice measurement technique

Can repeat on all three axes G_x , G_y , G_z

Duyn JH et al., JMR 1998; 132: 150-153

Off-isocenter slice measurement technique

Waveform ON:

$$s_{x1,Gon}(t) = \iint_{Y,Z} m(x_1, y, z) e^{-i\phi_0(x_1, y, z, t)} \cdot e^{-i2\pi \cdot \left[\frac{\gamma}{2\pi} \int_0^t G(\tau) d\tau\right] \cdot x_1} dy dz$$

Waveform OFF:

$$s_{x1,Goff}(t) = \iint_{Y,Z} m(x_1, y, z) e^{-i\phi_0(x_1, y, z, t)} \, \mathrm{d}y \, \mathrm{d}z$$

Phase difference:

$$\Delta \phi_{x1}(t) = \gamma \int_0^t G(\tau) \cdot x_1 \, \mathrm{d}\tau = x_1 \cdot k(t)$$

Duyn JH et al., JMR 1998; 132: 150-153

- Gradient (trajectory) correction
 - use actual trajectory for recon
 - pre-tune bulk gradient delay

Example: Axial Spiral at 1.5 T

Addy NO et al., MRM 2012; 68: 120-129

- Off-iso slice measurement technique
 - two measurements per axis
 - can measure X on X, Y on Y, Z on Z, and also cross terms; linearly combine
 - Δx should be small (may need avging)
 - need to account for phase wrapping
 - use spin echo for long waveforms
 - can acquire multiple slice offsets and gradient polarities to model individual gradient error terms

- Delay calibration
 - gradient errors (e.g., linear eddy currents) mainly cause an apparent bulk delay
 - adjust ADC window w.r.t. gradients
 - delays may be different for each axis

• Off resonance effects (ΔB_0 , fat, etc.)

$$s(t) = \iint_{X,Y} m(x,y) \cdot e^{-i\phi(x,y,t)} \cdot e^{-i2\pi \cdot [k_x(t) x + k_y(t) y]} \, \mathrm{d}x \, \mathrm{d}y$$
$$\phi(x,y,t) = 2\pi \psi(x,y)t$$

- patient (scan) dependent
- pre-scan shim calibration helps
- usually negligible for Cartesian MRI
- non-Cartesian MRI: signal loss, spatial blurring, geometric distortion

Effects of off-res for concentric rings: PSF blurring

Account for field inhomogeneity

- use shorter readouts
- measure/estimate field map

 $s(\mathrm{TE}_1) \longrightarrow I_1 = M'(x, y) \cdot e^{-i2\pi\psi(x, y)\mathrm{TE}_1}$

 $s(\mathrm{TE}_2) \longrightarrow I_2 = M'(x, y) \cdot e^{-i2\pi\psi(x, y)\mathrm{TE}_2}$

 $\hat{\psi}(x,y) = \arg(I_1 \cdot I_2^*)/2\pi(\Delta TE) \quad [\pm 1/2\pi\Delta TE]$

and then correct (during recon)^{1,2,3} *time-segmented, freq-segmented, etc.*

 1 Noll DC et al., IEEE TMI 1991; 10: 629-637

 2 Noll DC et al., MRM 1992; 25: 319-333

 3 Chen JY et al., MRM 2011; 66: 390-401

Linear Correction

$$\begin{split} \psi(x,y) &= f_0 + f_x x + f_y y \quad \text{(can fit to this model)} \\ \phi(x,y) &= 2\pi f_0 t + 2\pi \Delta k_x(t) x + 2\pi \Delta k_y(t) y \\ \Delta k_x(t) &= f_x t, \quad \Delta k_y(t) = f_y t \\ s(t) &= \underbrace{e^{-i2\pi f_0 t}}_{demod} \iint_{X,Y} m(x,y) \cdot e^{-i2\pi \cdot [(k_x(t) + \Delta k_x(t)) x + (k_y(t) + \Delta k_y(t)) y]} \, \mathrm{d}x \, \mathrm{d}y \\ &= \underbrace{e^{-i2\pi f_0 t}}_{shift k-space trajectory} \int_{y} m(x,y) \cdot e^{-i2\pi \cdot [(k_x(t) + \Delta k_x(t)) x + (k_y(t) + \Delta k_y(t)) y]} \, \mathrm{d}x \, \mathrm{d}y \end{split}$$

Can follow with frequency-segmented off-res correction

Irarrazabal P et al., MRM 1996; 35: 278-282

Frequency-segmented correction

Bernstein et al., Handbook of MRI Sequences, Fig. 17.63

Example: Axial Concentric Rings at 1.5 T

Wu HH et al., MRM 2008; 59: 102-112

- Field map measurement
- Segmented correction methods
 - Need to recon multiple images, $N_{\text{bins}} \sim 4(f_{\text{max}} - f_{\text{min}})T_{\text{acq}}$
- Other sources of off resonance
 - concomitant gradients
 - chemical shift (e.g., fat)
- Other ORC algorithms
 - autofocusing (field map optional)
 - combine with image reconstruction

Thanks!

- Further reading
 - references on each slide
 - further reading section on website
- Acknowledgments
 - John Pauly's EE369C class notes (Stanford)

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab