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Class Business

• Homework 2 due 5/7 Fri  

• Final project 
- Proposal due 5/10 Mon 

   can send us a draft to get feedback



Outline

• Spiral Trajectory 

• Non-Cartesian 3D Trajectories 
- 3D stack of radial 
- 3D radial 
- 3D cones 

• Non-Cartesian Image Reconstruction 
- Gridding reconstruction 
- Gradient measurement 
- Off-resonance correction



Spirals
ky

kx

“THE” non-Cartesian trajectory 

Highly robust to motion/flow effects 

Very fast! 

  - optimal use of gradients in 2D 

  - can acquire one image in ~100 ms



Spirals: Sampling Requirements
N interleaves

2 kr,max = 1 / dx

dk = 1 / FOV

Design 1 interleaf 

and rotate

Subject to HW limits



Spirals: Gradient Design
k-space trajectory

Gradients vs. time Slew rate vs. time

k-space pos vs. time



Spirals: Image Reconstruction
ky

kx

Gridding Algorithm



Spirals: Image Reconstruction
ky

kx

Gridding Algorithm



Spirals: Image Reconstruction
ky

kx

Gridding Algorithm

Follow with 2D Fourier Transform ...



Spirals: Gradient Delays

2 sample delay 1 sample delay calibrated



Spirals: Off-Resonance Effects

Nintlv = 8 

Trd = 26.67 ms

Nintlv = 16 

Trd = 13.41 ms

Nintlv = 48 

Trd = 4.61 ms 



Spirals: Practical Considerations

ky

kx

Trajectory design 

Gradient waveform calibration 

k-Space density compensation 

Off-resonance correction 

Fat suppression 

Gridding reconstruction

applies to non-Cartesian MRI in general



Spirals: Pros and Cons
ky

kx

Pros 

  - Very fast (up to single shot) 

  - Very short TE 

  - Robust to motion/flow effects 

Cons 

  - May have mixed contrast 

  - Sensitive to gradient delays 

  - Sensitive to off-resonance effects



Spirals: Real-Time Cardiac MRI

- Healthy subject; 1.5 T; 8-ch array 
- Golden-angle ordering 
- Spiral 2D GRE; 8-mm slice 
- Spatial resolution = 1.6 mm 
- SPIRiT recon with R = 2 
- 40 cm, 1.6 mm  
- 250x250 matrix @ 6 fps 
- 12-fold reduction in #TRs (vs. 2DFT) 
- 8-TR sliding window display (16 fps) 

Wu HH et al., ISMRM 2013, p3828 



Spirals: 3D LGE MRI

courtesy of Joelle Barral & Juan Santos (HeartVista)

3D Spiral IR-GRE 
- 6-interleaf VD spiral 
- 7.5-ms readout 
- 90 x 90 x 11 matrix 
- outer volume suppr 
- water-only RF exc 
- TR = 15.48 ms 
- 8-HB BH scan 

Reconstruction 
- SPIRiT (R = 2) 
- ~5-sec recon

1.5 T



3D Non-Cartesian Sampling

3D Cones

kz

kx

ky

kz

kx

ky

3D Stack of Rings

and much more ...

kz

kx

ky

3D Stack of Stars



3D Stack-of-Radial
kz

kx

ky

Pros 
  - Straightforward extension of radial 
  - Robust to motion 
  - Can tolerate a lot of undersampling 
Cons 
  - May have mixed contrast 
  - Sensitive to gradient delays 
  - Sensitive to off-resonance effects 

aka Stack-of-Stars



3D Stack-of-Radial: Liver MRI

courtesy of Tess Armstrong

Axial

Coronal

Sagittal

Free-breathing 3D Stack-of-Radial MRI3D Cartesian MRI

Insufficient breath-holding



3D Radial
kz

kx

ky

image from http://en.wikipedia.org/wiki/Koosh_ball

Pros 
  - Robust to motion (get DC every TR) 
  - Can tolerate a lot of undersampling 
  - Half-spoke PR has very short TE 
Cons 
  - May have mixed contrast 
  - Sensitive to gradient delays 
  - Sensitive to off-resonance effects 

http://en.wikipedia.org/wiki/Koosh_ball


3D Radial: Coronary MRA
Contrast-Enhanced MRA at 3.0T

ECG-gated, fat-saturated, inversion-recovery prepared spoiled gradient echo sequence 
(1.0 mm)3 spatial resolution, 1D self navigation, CG-SENSE recon, 5.4 min scan time

courtesy of Debiao Li and J Pang (Cedars-Sinai)



3D Cones
kz

kx

ky

Pros 
  - Very fast (3-8x vs. Cartesian) 
  - Very short TE 
  - Flexible readout length  
  - Robust to motion/flow effects 
Cons 
  - May have mixed contrast 
  - Sensitive to gradient delays 
  - Sensitive to off-resonance effects

Gurney PT et al., MRM 2006; 55: 575-82



Wu HH et al., MRM 2013; 69: 1083-1093

3D Cones: Coronary MRA
Multi-Phase Thin-Slab MIP Reformats



3D Cones: Hi-res CMRA
Thin-Slab MIP Reformats: 0.8 mm isotropic

Subject	A Subject	B Subject	C

1.2	mm 0.8	mm
Right	coronary	
artery	cross	
section

1.5 T; 8-channel cardiac coil

Addy NO, et al., MRM 2015; 74:614-621



Non-Cartesian Image Reconstruction

• Gridding reconstruction 

• Gradient measurement 

• Off-resonance correction



MRI Signal Equation

kx(t) =
�

2⇡

Z t

0
Gx(⌧) d⌧, ky(t) =

�

2⇡

Z t

0
Gy(⌧) d⌧

General definition of k-space:

s(t) =

ZZ

X,Y

m(x, y) · exp(�i2⇡ · [kx(t)x+ ky(t) y]) dx dy

= FT (m(x, y) ) = M( kx(t), ky(t) )



m(x, y) =

ZZ

kx,ky

M(kx, ky) · exp(i2⇡ · [kxx+ kyy]) dkx dky

m(x, y) = FT �1(M(kx, ky) )

MRI Reconstruction

simple for Cartesian (kx, ky) to Cartesian (x, y): 2D FFT

time consuming for non-Cartesian (kx, ky) to Cartesian (x, y)

k-space image space

uniform

non-uniform

uniform

non-uniform



Non-Cartesian Reconstruction
• Inverse Fourier transform 

- aka conjugate phase reconstruction 

• Gridding (+FFT)1 
- grid driven interpolation 
- data driven interpolation (more popular) 
- forward and reverse (inverse) 

• Non-uniform FFT (NUFFT)2 

• Block Uniform ReSampling (BURS)3

2 Fessler JA et al., IEEE TSP 2003; 51: 560-574
3 Rosenfeld D, MRM 2002; 48: 193-202

1 O’Sullivan JD, IEEE TMI 1985; 4: 200-207



Gridding: Basic Idea

convolve each acquired data point with kernel C(kx, ky)

k-space
C(kx, ky)

resample the convolution onto Cartesian grid points
2D inverse FFT;  de-apodization and FOV cropping



Gridding: Basic Math
S(kx, ky) =

X

j

2�(kx � kx,j , ky � ky,j)

M̂(kx, ky) = [(M(kx, ky) · S(kx, ky)) ⇤ C(kx, ky)] · III(
kx
�kx

,
ky
�ky

)

non-Cartesian dataset interpolation resample to grid

Sampling pattern:

C(kx, ky)Convolution kernel:

Gridding recon:

m̂(x, y) = [(m(x, y) ⇤ s(x, y)) · c(x, y)] ⇤ III( x

FOVx
,

y

FOVy
)

remove by croppingremove by deap! m(x, y)

III(
kx
�kx

,
ky
�ky

)Grid:

FFT



Gridding: Design Issues

• Convolution kernel 
- apodization; aliasing 

• Sampling grid density (Cartesian) 
- aliasing 

• Sampling pattern (non-Cartesian) 
- impulse response and side lobes 
- density characterization / compensation



Gridding: Design - Kernel

• Ideal convolution kernel: SINC 
- don’t need de-apodization 
- infinite extent impractical to implement 
- windowed version has limited performance 

• Desired kernel characteristics 
- compact support (finite width) in k-space 
- minimal aliasing effects in image (sharp 

transition)



Gridding: Design - Kernel

�kx =
1

FOVx
,�ky =

1

FOVy

Combine with grid oversampling

�kx
↵

=
1

↵FOVx
,
�ky
↵

=
1

↵FOVy
↵ > 1

M̂(kx, ky) = [(M(kx, ky) · S(kx, ky)) ⇤ C(kx, ky)] · III(
kx

�kx/↵
,

ky
�ky/↵

)

m̂(x, y) = [(m(x, y) ⇤ s(x, y)) · c(x, y)] ⇤ III( x

↵FOVx
,

y

↵FOVy
)



Gridding: Design - Kernel
Combine with grid oversampling

object ……

α = 2 very forgiving; many kernels work well; apodization minimal
expensive … especially for 3D gridding

c(x,y)

object replica

αFOV

c(x,y)
……

replica

FOV
aliasing

replicas from resampling to gridFOV
cause additional aliasing



Gridding: Design - Kernel

• Jointly consider α and kernel 
- minimize aliasing energy 
- characterize trade-offs 
- numerical designs possible 
- Kaiser-Bessel window works very well, with 

proper choice of β and kw1,2; precompute a 
lookup table to speedup calculations2

2Beatty et al., IEEE TMI 2005; 24: 799-808

1Jackson et al., IEEE TMI 1991; 10: 473-478

CKB(kx) = I0

 
�

s

1� (
kx

kw/2
)2

!



Gridding: Design - Density
Sampling density of S(kx, ky) not uniform: ⇢(kx, ky)

M̂(kx, ky) = [(M(kx, ky) ·
S(kx, ky)

⇢(kx, ky)
) ⇤ C(kx, ky)] · III

Pre-compensation of sampling density:

density corrected on a data point basis before convolution
need to know ⇢(kx, ky)

from geometrical analysis, numerical analysis (Voronoi), etc.

inverse of ρ known as the density compensation function (DCF)



M̂(kx, ky) =
[(M(kx, ky) · S(kx, ky)) ⇤ C(kx, ky)] · III

⇢(kx, ky)

Gridding: Design - Density
Post-compensation of sampling density:

density corrected on a grid point basis after convolution
can estimate ρ along with gridding; grid all 1s:

… but only an approximation and fails when S changes rapidly

⇢̂(kx, ky) = [S(kx, ky) ⇤ C(kx, ky)] · III

may be okay if S changes slowly



Gridding: 2D Radial Example
Radial trajectory [256x256] with ramp DCF



Gridding: 2D Radial Example

α = 2; grid size = 2x[256 256]; kw = 4; 

Kaiser-Bessel convolution kernel with linear lookup table1

1Beatty et al., IEEE TMI 2005; 24: 799-808

showing 1D & one side



Gridding: 2D Radial Example
Gridded data on [512x512] grid



Gridding: 2D Radial Example
Inverse 2D FFT produces image with 2x FOV



Gridding: 2D Radial Example
Deapodization function is FT of KB convolution kernel



Gridding: 2D Radial Example
Deapodized image



Gridding: 2D Radial Example
FOV cropped to extract desired [256x256] image

α = 2, kw = 4



Gridding: 2D Radial Example
FOV cropped to extract desired [256x256] image

α = 1.375, kw = 51

1Beatty et al., IEEE TMI 2005; 24: 799-808



Gridding: Summary

• Data input 
- k-space data 
- k-space traj (usually normalized), DCF 

• Gridding params 
- target image dimensions [MxN] 
- grid oversampling factor α 
- kernel type and width 

• Data output 
- gridded Cartesian k-space 
- reconstructed image



Gradient Measurement

• Non-Cartesian recon requires 
- k-space trajectory 
- density compensation function 

• Both depend on actual gradient 
waveforms on scanner 
- can deviate from desired 

• Knowledge of k-space trajectory also 
important for RF design



Gradient Measurement

• Gradient imperfections cause artifacts 
- FOV scaling, shifting 
- signal loss, shading 
- image blurring, geometric distortion 

• Sources of gradient errors 
- eddy currents (B0, linear) 
- group delays (RF filters, A/D) 
- amplifier limitations (BW, freq response) 
- gradient warping 
- other ...



Gradient Measurement 

• General techniques 
- off-iso slice technique1,2, and more 

• Trajectory-specific techniques 
- radial3, spiral4, and more 

• Characterize gradient system 
- assume linear time-invariant model5

5 Addy NO et al., MRM 2012; 68: 120-129
4 Robison RK et al., MRM 2010; 63: 1683-90

3 Peters DC et al., MRM 2003; 50: 1-6

2 Beaumont M et al., MRM 2007; 58: 200-205

1 Duyn JH et al., JMR 1998; 132: 150-153



Gradient Measurement
Off-isocenter slice measurement technique

Duyn JH et al., JMR 1998; 132: 150-153

test waveform

signal

G

RF

ADC

x1

Can repeat on all three axes Gx, Gy, Gz

Δx



Gradient Measurement
Off-isocenter slice measurement technique

Duyn JH et al., JMR 1998; 132: 150-153

Waveform ON:

Phase difference:

��x1(t) = �

Z t

0
G(⌧) · x1 d⌧ = x1 · k(t)

sx1,Gon(t) =

ZZ

Y,Z

m(x1, y, z)e
�i�0(x1,y,z,t) · e�i2⇡·[ �

2⇡

R t
0 G(⌧)d⌧ ]·x1 dy dz

Waveform OFF:

sx1,Goff (t) =

ZZ

Y,Z

m(x1, y, z)e
�i�0(x1,y,z,t) dy dz



Gradient Measurement 



Gradient Measurement
• Gradient (trajectory) correction  
- use actual trajectory for recon 
- pre-tune bulk gradient delay

Calculated TrajectoryNominal Trajectory Difference (x8)

Example: Axial Spiral at 1.5 T

Addy NO et al., MRM 2012; 68: 120-129



Gradient Measurement

• Off-iso slice measurement technique 
- two measurements per axis 
- can measure X on X, Y on Y, Z on Z, and 

also cross terms; linearly combine 
- Δx should be small (may need avging) 
- need to account for phase wrapping 
- use spin echo for long waveforms 
- can acquire multiple slice offsets and 

gradient polarities to model individual 
gradient error terms



Gradient Measurement

• Delay calibration 
- gradient errors (e.g., linear eddy currents) 

mainly cause an apparent bulk delay 
- adjust ADC window w.r.t. gradients 
- delays may be different for each axis



s(t) =

ZZ

X,Y

m(x, y) · e�i�(x,y,t) · e�i2⇡·[kx(t) x+ky(t) y] dx dy

Off-resonance Correction 
• Off resonance effects (ΔB0, fat, etc.)  

- patient (scan) dependent 
- pre-scan shim calibration helps 
- usually negligible for Cartesian MRI 
- non-Cartesian MRI: signal loss, 

spatial blurring, geometric distortion

�(x, y, t) = 2⇡ (x, y)t



Off-resonance Correction 
Effects of off-res for concentric rings: PSF blurring



• Account for field inhomogeneity 
- use shorter readouts 
- measure/estimate field map 

 
 
 
 
 
and then correct (during recon)1,2,3 

time-segmented, freq-segmented, etc.

Off-resonance Correction 

1 Noll DC et al., IEEE TMI 1991; 10: 629-637

3 Chen JY et al., MRM 2011; 66: 390-401

s(TE1) �! I1 = M 0(x, y) · e�i2⇡ (x,y)TE1

s(TE2) �! I2 = M 0(x, y) · e�i2⇡ (x,y)TE2

 ̂(x, y) = arg(I1 · I⇤2 )/2⇡(�TE) [±1/2⇡�TE ]

2 Noll DC et al., MRM 1992; 25: 319-333



Off-resonance Correction 
Linear Correction

 (x, y) = f0 + fxx+ fyy (can fit to this model)

�(x, y) = 2⇡f0t+ 2⇡�kx(t)x+ 2⇡�ky(t)y

�kx(t) = fxt, �ky(t) = fyt

s(t) = e�i2⇡f0t

ZZ

X,Y

m(x, y) · e�i2⇡·[(kx(t)+�kx(t)) x+(ky(t)+�ky(t)) y] dx dy

demod shift k-space trajectory

Irarrazabal P et al., MRM 1996; 35: 278-282

Can follow with frequency-segmented off-res correction



Off-resonance Correction 
Frequency-segmented correction

Bernstein et al., Handbook of MRI Sequences, Fig. 17.63



Off-resonance Correction 

Regular Recon Field Map ORC Image

Example: Axial Concentric Rings at 1.5 T

Wu HH et al., MRM 2008; 59: 102-112



Off-resonance Correction
• Field map measurement 

• Segmented correction methods 
- Need to recon multiple images, 

Nbins ~ 4(fmax - fmin)Tacq 

• Other sources of off resonance 
- concomitant gradients 
- chemical shift (e.g., fat) 

• Other ORC algorithms 
- autofocusing (field map optional) 
- combine with image reconstruction



Thanks!

• Further reading 
- references on each slide 
- further reading section on website 

• Acknowledgments 
- John Pauly’s EE369C class notes (Stanford)

Holden H. Wu, Ph.D. 

HoldenWu@mednet.ucla.edu 

http://mrrl.ucla.edu/wulab
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