Perfusion Imaging: **Dynamic Contrast-Enhanced MRI**

David Geffen School of Medicine

Kyung Sung, PhD 3/9/2017

Department of Radiological Sciences David Geffen School of Medicine University of California, Los Angeles

Tumor Angiogenesis

- Cancer cannot grow beyond a certain size without developing a vascular network to provide additional nutrients and oxygen for growth (angiogenesis)
- Recruited tumor vasculature is different from normal vasculature, measurable with contrast-enhanced MRI

Tumor Vasculature and Enhancement

- Cancer has many traits different from surrounding tissue:
 - Unchecked cell proliferation
 - Cannot grow beyond a certain size without developing a vascular network

• MRI has great potential to detect cancer and vascular abnormalities

Jain R, Nat. Medicine 2001 ormalities

Contrast Enhanced MRI

- One post-contrast image
- Pre- and post-contrast image
- "Slow" dynamic acquisition (~ minutes)
- "Fast" dynamic acquisition (~ seconds)

Dynamic Contrast-Enhanced (DCE) MRI

Conventional DCE-MRI

Frame #1 Frame #2 Frame #3 Frame #N1

High Frame-Rate DCE-MRI

DCE-MRI: Temporal Resolution

- High spatial and temporal resolution is desirable for DCE-MRI applications, especially for better quantitative analysis
- Many k-space data sharing schemes (e.g., TWIST and DISCO) become popular

Madhuranthakam AJ, et al. MRM 2006 Herrmann KH, et al. JMRI 2011

Dynamic Contrast Enhanced (DCE) MRI

Pre-contrast

Subtraction

Peak-contrast

 DCE-MRI continuously monitors enhancement of tissue before and after injection of contrast agent

Quantitative DCE-MRI

Quantitative DCE-MRI

Outline of Topics

- Conversion from MR signal to concentration
 - T1 measurements
 - B1 inhomogeneity
- Conversion from concentration to guantitative biomarkers (pharmacokinetic modeling)
 - Standard Tofts (two-compartment) model
 - Arterial input function
 - Dispersion modeling
- DCE-MRI data analysis (post-processing option)

MRI Modeling: MR Signal --> Concentration

T1-weighed DCE-MRI

 DCE-MRI continuously monitors enhancement of tissue before and after injection of contrast agent

MR Signal Intensity

Signal equation for RF-spoiled gradient echo (T1-weighted) sequence:

$$S \propto \frac{(1 - e^{-TR/T1})\sin\theta}{1 - e^{-TR/T1}\cos\theta}$$

• MR signal intensity is not linearly proportional to T1 relaxation time

- 1/T1 (R1) is linearly proportional to concentration
 - Relaxivities (r1) of the contrast agent determine the slopes

Gadolinium Chelate	r1 relaxivities at 3T (L mmol ⁻¹ s ⁻¹)
Magnevist (Gd-DTPA)	3.3
Gadovist (Gd-BT-DO3A)	3.6
MultiHance (Gd-BOPTA)	6.3

Pintaske J. Investigative Radiology 2006

• Measurement of baseline relaxation time $(T_{1,0})$ is required to monitor concentration C(t) from MR signal intensity

- Assume $T_{1,0}$ vs. Measure $T_{1,0}$
- Variable flip angle (VFA) approach, often called DESPOT1, is a common choice for fast 3D volumetric T_{1.0} mapping

Deoni S, et al. MRM 2003

VFA T_{1,0} Measurements

: 3D imaging (SPGR)

B1 inhomogeneity at 3T

Brain

Breast

Abdomen

Leg

• VFA T_{1,0} mapping is sensitive to B1 inhomogeneity

 Transmit RF (B1) field inhomogeneity can create 30 – 50 % flip angle variation across the body at 3T

> Sung K, et al. JMRI 2008 Azlan C, et al. JMRI 2010 Hancu I, et al. ISMRM 2010 p.2470 Sung K, et al. JMRI 2013

Compensating for B1 inhomogeneity at 3T

- Additional B1 measurements / B1 shimming may be needed to compensate for B1 inhomogeneity
- There exist other ways to compensate for B1 inhomogeneity

T₁ map using VFA

Sung K, MRM 2013

Challenges: Inter- and Intra-scanner Variability

K Sung, et. al., MRM 2013 N Rangwala, et. al., JMRI 2016

Summary

- Pre-contrast T1 ($T_{1,0}$) information is needed for conversion from MR signal to concentration
 - Assume T_{1.0} from literature
 - Measure $T_{1,0}$ using VFA

- VFA T_{1,0} mapping requires
 - Careful selection of a set of flip angles
 - Sufficient SNR (e.g., multiple measurements)
 - Compensation for B1 inhomogeneity (for \geq 3T applications)

Pharmacokinetic Modeling: Concentration \rightarrow Quantitative Biomarkers

- Pharmacokinetics
 - What the body does to the drug (or contrast agent)
 - Related "doses of drug" to "concentrations of drug at various locations in the body"
- Although pharmacokinetics is a leap from the molecular and cellular analyses,
 - We are interested in kinetic phenomena that occur at the level of the whole body

- The body is divided into compartments
 - Vascular plasma space
 - Extracellular extravascular space (EES) or interstitial space
 - Intracellular space
- Each compartment is assumed to be well-mixed
 - Uniform concentration in each compartment
 - Want to know how the average concentration of the drug varies with time in the compartment
 - Mass can be transferred between different compartments
 - Inputs for drug entering the body / Outputs for drug clearance

Compartment Models

- Each compartment has:
 - Volume
 - Average concentration of drug
- Principles
 - Mass conservation
 - Rate constants for transfer between compartments
- Compartment models are not mechanistic
 - Several processes are lumped in black boxes

Drug Administration and Clearance

- Drug administration
 - Controlled release from devices
 - Intravenous injection

- Drug Clearance
 - Renal excretion
 - Renal and liver excretion

Pharmacokinetic Modeling

- Three tissue compartments
 - Vascular plasma space
 - Extracellular extravascular space (EES)
 - Intracellular space

Pharmacokinetic Modeling

- Three tissue compartments
 - Vascular plasma space
 - Extracellular extravascular space (EES)
 - Intracellular space

Fick's First Law of Diffusion

per unit volume of tissue

Pharmacokinetic Modeling

- Two tissue compartments
 - Vascular plasma space

School of Medicine

- Extracellular extravascular space (EES)

Standard Tofts Model

$$\frac{\mathbf{C}_t}{\mathbf{E}} = \mathbf{K}^{trans} (\mathbf{C}_p - \mathbf{C}_t / v_e)$$

 Tissue concentration ≠ EES concentration $-C_t = v_e \cdot C_e$

 Plasma concentration ≠ Blood concentration $-C_{p} = C_{b}/(1-Hct)$

Matsuzawa T. Comp Haematol Int 1996

Standard Tofts Model

Symbol	Preferred short name	Units	Full name
K ^{trans}	Transfer constant ^a	min ⁻¹	Volume transfer consta blood plasma and EE
$k_{ m ep}$	Rate constant	min ⁻¹	Rate constant between blood plasma
Ve	EES ^d	None	Volume of extravascula space per unit volume

Tofts P, JMRI 1991

Standard Tofts

nt between ES EES and

r extracellular e of tissue^e

Arterial Input Function (AIF)

- Population-averaged AIF:
 - Bi-exponential model
 - Bi-exponential + linear upslope model
 - Single Gaussian + exponential model
 - Dual Gaussian + exponential model

McGrath DM, MRM 2009

 Subject-based AIF requires - High temporal and spatial resolution Compensation for flow-enhancement

Bi-exponential Model: Weimann AIF

 $K^{trans} = 1.32 \text{ min}^{-1}$

Dual-Gaussian+Exponential Model: Parker AIF

 $C_t(t)$

 $K^{trans} = 0.47 \text{ min}^{-1}$

$k_{ep} = 0.65 \text{ min}^{-1}$

Subject-based AIF

 $C_t(t)$

K^{trans} = 0.35 min⁻¹

Arterial Input Function

$k_{ep} = 0.87 \text{ min}^{-1}$

Delay and Dispersion Model

- Recruited vasculature is characterized by irregular vessels with increased permeability
- Delay and dispersion model offers another quantitative measure of vasculature

Delay and Dispersion Model

• Contrast agent will disperse as it travels through the vasculature

Dispersion Model History

Magnetic Resonance in Medicine 44:466–473 (2000) Delay and Dispersion Effects in Dynamic Susceptibility Contrast MRI: Simulations	Contrast-ultrasoun for localization of p Authors: M. Kuenen, M.	
Using Singular Value Decomposition	Miew research o	
Fernando Calamante. [*] David G. Gadian, and Alan Connelly	Journal: IEEE transacti	
	Year: 2011	
	Volume: 30	
	Issue:	
	Pages: 1493–1502	

CONTRAST DISPERSION MAPPING IN DCE MRI: A NEW OPTION FOR PROSTATE CANCER DETECTION

Massimo Mischi¹, Kyveli Kompatsiari¹, Tamerlan Saidov¹, Marc Engelbrecht², Hessel Wijkstra^{1,2}, and Marcel Breeuwer^{1,3} ¹Eindhoven University of Technology, Eindhoven, Netherlands, ²Academic Medical Center, Amsterdam, Netherlands, ³Philips Healthcare, Best, Netherlands

ISMRM 2013 p.95

Fig. 1: Histology results with corresponding parametric maps of k_{ep} and dispersion κ .

nd diffusion imaging prostate cancer.

Mischi, H. Wijkstra

atalog entry for this paper

ons on medical imagi...

Delay and Dispersion Effects in Dynamic Susceptibility Contrast MRI: Simulations Using Singular Value Decomposition

Fernando Calamante,^{*} David G. Gadian, and Alan Connelly

$$C_a(t) = C_a^{(est)}(t) \otimes h^*(t)$$

$$h^*(t) = -\frac{dR^*(t)}{dt} = \beta \cdot e^{-\beta t}$$

Magnetic Resonance in Medicine 44:466-473 (2000)

$$C_t(t) = K^{trans} \int_0^t C_p(t') e^{-k_{ep}(t-t')} dt'$$

Population Averaged AIFs (C_p(t)): Weimann, Fritz-Hans, Parker

Idard Tofts

$$C_{t}(t) = K^{trans} \int_{0}^{t} C_{p}(t') e^{-k_{ep}(t-t')} dt'$$

Population Averaged AIFs (C_p(t)): Weimann, Fritz-Hans, Parker

$$C_{p}(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} \cdot e^{\frac{-\kappa(t-\mu)^{2}}{2t}}$$
 Dispective

$$C_{t}(t) = \beta \int_{0}^{t} \sqrt{\frac{\kappa}{2\pi t}} \cdot e^{\frac{-\kappa(t-\mu)^{2}}{2t}} \cdot e^{-k_{ep}(t-t')}$$

ndard Tofts

rsion

dt'

$$C_{t}(t) = K^{trans} \int_{0}^{t} C_{p}(t') e^{-k_{ep}(t-t')} dt'$$

Population Averaged AIFs (C_p(t)): Weimann, Fritz-Hans, Parker

$$C_{p}(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} \cdot e^{\frac{-\kappa(t-\mu)^{2}}{2t}}$$
 Dispective
$$C_{t}(t) = \beta \int_{0}^{t} \sqrt{\frac{\kappa}{2\pi t}} \cdot e^{\frac{-\kappa(t-\mu)^{2}}{2t}} \cdot e^{-k_{ep}(t-t')}$$

$$\begin{split} C_t(t) = & \overline{K^{trans}} \int_0^t C_p(t') e^{-k_{ep}(t-t')} dt' & \text{Monormalization} \\ C_p^{dispersed} = & C_p(t) \star h(t) & h(r) = \frac{1}{\beta} e^{-t/\beta} \end{split}$$

ndard Tofts

ersion

dt'

dified persion

Dispersion vs. Modified Dispersion

GS 4+4 vs. GS 3+4 (PZ)

Low Dispersion

High Dispersion

Dispersion Modeling

$$C_{p}(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} \cdot e^{\frac{-\kappa(t-\mu)^{2}}{2t}}$$
 Dispective
$$C_{t}(t) = \beta \int_{0}^{t} \sqrt{\frac{\kappa}{2\pi t}} \cdot e^{\frac{-\kappa(t-\mu)^{2}}{2t}} \cdot e^{-k_{ep}(t-t')}$$

Modified Dispersion Modeling

$$\begin{split} C_t(t) = & K^{trans} \int_0^t C_p(t') e^{-k_{ep}(t-t')} dt' & \text{Mod} \\ C_p^{dispersed} = & C_p(t) \star h(t) & h(r) = \frac{1}{\beta} e^{-t/\beta} \end{split}$$

dified persion

Dispersion vs. Tofts model

Dispersion model shows the clearest delineation between tumor and normal tissue

Gleason 3+4

Physiological Understanding

- PK parameters are sensitive to a choice of the AIF model
- PK parameters can have different physiological meaning
 - High-permeability case
 - Low-permeability case
 - Mixed case
- Extended Tofts model

$$C_t(t) = v_p C_p + K^{trans} \int_0^t C_p(t') exp\left(\frac{-K^{trans}(t-t')}{v_e}\right) dt$$

Vascular Plasma Space Extravascular Extracellular Space (EES)

Intracellular Space

Tofts P, JMRI 1991

Post-processing Option: DCE-MRI Data Analysis

Quantitative Data Analysis

- $T_{1,0}$ map generation
- Conversion from MR signal to CA concentration
- Regions of interest (ROIs) plots
- PK parameter calculation
- Software tools should also be able to:
 - Handle large 4D (3D + time) data
 - Manage DICOM databases
 - Locate regions of interests
 - Export back to DICOM databases

OsiriX Plug-in: DCE Tool

- DCE-MRI analysis software (DCE Tool)
 - Plug-in to OsiriX (open-source medical image processing software)

- Selected features for DCE Tool:
 - $-T_{1,0}$ map calculation (with an option for B1 compensation)
 - Supports for several AIF functions
 - PK parameter calculation (standard Tofts / extended Tofts models)
 - Semi-quantitative parameter calculation (initial slope, area under the curve, etc)

A Rosset et al, J of Digital Imaging 2004

	表	Rate: 10 im/s Pos: Plaγ	>>>
Value	3D Panel	4D Player	

Mean: 69.409 SDev: 22.932 Sum: 1527

Quantitative DCE-MRI Software

David Geffen School of Medicine

http://kyungs.bol.ucla.edu/software/DCE tool/DCE tool.html

Prostate DCE-MRI

Prostate DCE-MRI

Temporal resolution ~ 4sec Spatial resolution = 1.6 X 1.6 X 3.6 mm

K^{trans} (min⁻¹ X 10000)

- DCE-MRI has great potential to accurately produce quantitative biomarkers for cancer imaging
- PK parameters can represent different meanings depending on various assumptions
- Understanding possible sources of errors is critical for accuracy and precision
- Standard imaging protocol and image analysis are important for reproducible results

Thank You!

Kyung Sung, PhD ksung@mednet.ucla.edu http://kyungs.bol.ucla.edu

