truction - |

Daniel B. Enn#s, Ph.D.

¥ 5% David Geffen
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Lecture #11 - Learning Objectives

e Understand the small tip angle approximation.

 Appreciate that the small tip angle approximation works for
intermediate flip angles!

 Understand what truncation artifacts are and one way to
reduce them.

 Learn to describe k-space in words and mathematically.
 Appreciate what different points in k-space represent.

* Understand the connection between Fourier encoding and
image acquisition.

« Be able to describe the roll of phase and frequency encoding.

. David Geffen UCLA

School of Medicine Radiology



Class Business

* Thursday (2/23) from 6-9pm
— 6:00-7:30pm Groups
« Avanto
— Binru Chen, Junjie Chen, Yuhua Chen
 Skyra
— Jie, Qihui, Cass

* Prisma
— Nyasha, Fadil, Vahid

— 7:30-9:00pm Groups
e Avanto
— Sara, Yara, April
e Skyra
— Timothy, Diana, Zhaohuan, Xingmin (?)

 Prisma
— Daisong, Jingwen, Fang-Chu, Timothy

. David Geffen UCLA

School of Medicine Radiology



Class Business

 HW#1
- 13.3+3.2 [15.75,6.5]
e HW #2

— 11.7£2.6 [15, 6]

e Class Average
— 25.5+5.5[30.5, 12.5]

e <20 points please see me...

. David Geffen UCLA

School of Medicine Radiology
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Lecture #13 - Learning Objectives

e Understand how to combine data from several receiver
channels.

 Appreciate how the final image is obtained from the sum over
all sampled spatial frequency (Fourier) patterns.

 Define how the field-of-view and the number of acquired data
points impacts spatial resolution.

 Describe the parameters that control the field of view.

 Understand the applications of zero padding and windowed
reconstructions.

* Identify sources of Gibb’s ringing.

. David Geffen UCLA

School of Medicine Radiology



Multi-Channel Reconstruction



Multiple Coil Reconstruction

Each coil element (channel) has a unique sensitivity profile — B, (7)

Coil 1 ok N Coil 2

\/\::;I\Q



Multiple C0|I Reconstructlon

(- ksspace ) RMS ngtude )

ﬂ)f(f)dZ( |

X jth-coil/

I(7) — Final magnitude image
I; () — Image from j" coil

Uj — Noise variance
Depends on coil loading
Proximity to patient
Measured with “noise scan

Weights each coil’s contribution
David Geffen U CLA

School of Med Radiology




Image Reconstruction



Image Reconstruction

S _ ‘7 I Data Consistency
I Constraint

/TN

Measured  Spatial Information Image
Signal Encoding Scheme Function
(Fourier Transform)

[=T'{S}

Our task is to recover | from the measured signals.

(= David Geffen UCLA

N School of Medicine Radiology




MR Signal Equation

S( // ng 77) e tAW(Mt 4 The MRI Signal Equation is the...

/ / €—zAw(x’y)td£Udy ...2D Fourier Transform!

Aw ) "}/GCE xr + ")/Gy Yy Gradients define Aw
)i Y . |
k’x (t) — 27_‘_ G t ]{fy (t) — 27_‘_ G t k-space is convenient...
s (km (t / / SB, ) 6—7227‘(‘[]{90 (t)x+ky (t)y]dxdy
T,Y =
; David Geffen UCLA

VLAY School of Medicine Radiology




The Fourier Transform

— —I_OO . RGN i
S(]‘C) _ / [ (,,7) 6—227Tk-7“d77 ME?UZ?OH:I

— OO

S(k) <2 I(7)

o0 ,
S(he) = [ Tla)e A
‘oo ptoo ,
S(ky, k) = / / I (z,y) e ?rhesthn) dedy 2D,

Egn. 5.110

+00 +0o0 +0o0 .
S(ky, ky, kz) :/ / / I (z,y, z) e 2 ket tbyytha2) gudydz 3D

David Getfen UCLA

N School of Medicine Radiology




Image Reconstruction

+00 L |
Given S(k‘n) — / )i (rf’) 6_7/27Tkn'7°d7:’ MRI Signal

Equation
— OO

How do we determine I (7)?

UCLA

Radiology




Image Reconstruction

~

Equation

— 00 L
S(ky) :/ (7) o~ 127kn T 7= MRISignal

— OO

H
D — {En — nARn=..-2-1.01,2 }

Uniform k-space sampling

vvvvvvvvvvvvvvvvvvvv

AAAAAAAAAAAAAAAAAAAA

 David Geffen = omtmtmtmtm0mtmtmt=tmtmtmtmt—t—s o—o U CLA

School of Medicine Radiology
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Image Reconstruction

+ 00 _—
S(E,) = / I (F) e~ i27hn 7 g
i
D — {En — nARn=..-2-1.01,2 }
Uniform k-space sampling
i
T (ZE) €—i27TnAkw-azdx

S[n] = S (nAk,) =

One-dimensional Case UCL/y\




Image Reconstruction

~+ 00 ,
_ / Ji (33) 6—@27TnAkx-azdx
]

This is what we measure! This is what we want!

UCLA

Radiology




Image Reconstruction

+ 00 ,
_ / Ji (33) 6—@27TnAkx-azdx

—00 M= Egn. 6.9
This is what we measure! This is what we want!

We can show the following...(Page 191 in Lauterbur).
o " 3o
E S[?’L] 6227TnAkac — ALk: E ] (Qf Ank ) Eqn. 6.10

nN=——=aoo n=——aoco

Fourier Series Periodic Extension of I(x)
David Geften UCLA

N School of Medicine Radiology




Image Reconstruction

Z S[n]eiQWnAka: _ AL]@ Z T (.CIZ’ Ank)

n——oo n=——uoo

* Fourier series e Periodic extension of /(x)
e Ak is the fundamental frequency * nis an integer

* S[n] coefficient of the n" harmonic * Period is 1/Ak=FOV

«—FOV—«2:FOV~><«3:FOV~>
_ Periodic extensions of a object/function.
David Geften UCLA

N School of Medicine Radiology




Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco < n < +o0}

UCLA

Radiology




Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco < n < +o0}

Can I(x) be recovered from its periodic extension?

O

Z S[n]eﬂwnAkaz _ ﬁ Z T ($ Ank)

nN=——=oo n=——=oo

UCLA

Radiology




Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco < n < +o0}

Can I(x) be recovered from its periodic extension?

Z S[n]eﬂwnAkaz _ ﬁ Z T ($ Ank)

nN=——=oo n=——=oo

If I(x) =0on |z| > FOV,/2 (i.e. Ak < F5Vw> , then

UCLA

Radiology




Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco < n < +o0}

Can I(x) be recovered from its periodic extension?

Y SplePT AR = LN T (2= ) enen

nN——=aoo nN=——aoo

If I(x) =0 on \x\>FOVx/2(ze Ak < ),then

FOV

— Ak Z S[?’L]@iQW%Akx, ‘Qj“ < Aik’ Eqn. 6.16

n=—od UCLA

Radiology




But oo takes forever...



Finite Sampling

S(k) is measured atk € D
D ={nAk,—N/2 <n<+N/2}

T T

Fourier Number of
Step-size Sample Points
N/2-1
12mnAkx 1
[(.CL‘) = Ak E S[n]e ; ‘.CC‘ < Af Ene2
n=—N/2
David Geffen  This is the fundamental image reconstruction equation for MRI.  YCLA




Spatial Resolution



Human Vision System

e What resolution can we see at?
— 4-5 cycles per millimeter unaided

« How many “pixels” fill our visual field?
— Order of 10e6 to 100e6

||| -'"'"
EE

= ||l umy =S
1S 4

4 =1 : I.'.'.' = IIII|I:5

c=m I E'

USAF 1951 GURLEY
(D ¢ TROY. N.Y.

USAF Resolution Target
>N David Geffen UCLA

} School of Medicine Radiology




Spatial Resolution

e Spatial resolution of an imaging system is the smallest
separation o0x of two point sources necessary for them
to remain resolvable In the resultant image.

I(z)=1(x)*h(x)

|

Point
Image  Object Spread
Function

i David Geffen st

LAY School of Medicine Radiology




Convolution

[ ] #cea under f(r.)g(t-r.)
f(x)
at-t)
(f+a)x1)

[ ] #cea under f(n)g(t-t)
f(x)
a-x)
(f+a)x1)

5 David Geffen AT

g F' School of Medicine Radiology




Spatial Resolution
I (x)

L1

— W —>

T T B

«— Ny —> W -

N
N\

=
N—r"

I[(x)=1(x),if and only if h (x) = ¢ (x)

David Geffen U CL A
School of Medicine

Radiology




Spatial Resolution

e The resolution limit of an imaging system is the
width (77:) of its point spread function:

— Wy is the full-width half-max of /1(x)

. David Geffen UCLA

School of Medicine Radiology



Spatial Resolution

e The resolution limit of an imaging system is the
width (77:) of its point spread function:

— Wy is the full-width half-max of /1(x)

* Alternately,

— Wi of h(x) is the width of an approximating box-function
with the same height and area as /1(x):

+ 00
Wy = / h(x)dx

David Geffen UCLA

N School of Medicine Radiology




Point Spread Function

+ How do we determine the PSF, h(x)? I (z) =1 (x)x*h ()
— Set /(x) to be a O-function, then

[ (x)=h(z)
— Recall, N/2—1
[A((E) p— Ak Z S[n]eiQﬂ'nAkaj Eqn. 6.20 / Eqn. 8.5
n=—N/2
— Therefore, N/2_1
h(ili‘) — Ak Z €i27TnAkx Eqn. 8.6
n=—N/2

UCLA

This is the PSF for Fourier sampling. Radiology




Fourier Reconstruction PSF

sin(w N Akx)

h(x) ~ Ak

-0r-

— D’[/’]“ (N, X) Eqn. 8.7

SiIl(?TA]CZIL’) T

Dirichlet Function

Increasing the number of points (N) n
Decreasing the FOV (increasing Ak)
Decreases the FWHM
~_AA_/\ N~ WVW\N\W\/\/M J\/\/VV\/WX

N=16, Ak=1

(\

N=16, Ak=2

N=64,Ak=1

|

N=64, Ak=2



Fourier Reconstruction PSF

| 2AL 1
Wi, = T~ , h(x)dr = AL Ean. 8.2
- 2Ak
Limits over a Fourier Pixel Size
single period (AXF)

UCLA

Radiology




Fourier Reconstruction PSF

W, = - [ " hia)d !
— T €T —
" hmas |1 (@) JAWAN 5
2Ak
Limits over a Fourier Pixel Size
single period (AXF)
1 FOV
W), = =

NAE N




Fourier Reconstruction PSF

2Ak 1
-y N)dr = 7
TN

| |

Limits over a Fourier Pixel Size
single period (AXF)

1 FOV
M= NAET N

Note, we can’t reduce W and NV simultaneously, therefore

W, =

hma,a:

— An increase in spatial resolution (decrease in W)
requires an increase in NV or Ak (decrease in FOV)
— A decrease in spatial resolution (increase in ;) requires

£~ David Gefien @ decrease in IV or Ak (increase in FOV) UCLA

N School of Medicine Radiology




Finite Sampling

\ School of Medicine Radiology

(N David Geffen UCLA




Field of View



Sampling Theorem
* A space signal g(x) is space-limited if:
— g(x)=0 for |[x|>FOV/2
A space signal g(x) is band-limited if:
— its frequency spectrum is zero for |k|>kmax

. David Geffen UCLA

School of Medicine Radiology



Sampling Theorem

* A space signal g(x) is space-limited if:
— g(x)=0 for |x|>FOV/2
A space signal g(x) is band-limited if:
— its frequency spectrum is zero for |k|>Kmax
e If g(x)is:
— Space-limited to |x|<FOV/2
— Band-limited to |k|<kmax

. David Geffen UCLA

School of Medicine Radiology



Sampling Theorem

* A space signal g(x) is space-limited if:
— g(x)=0 for |x|>FOV/2
A space signal g(x) is band-limited if:
— its frequency spectrum is zero for |k|>Kmax
e If g(x)is:
— Space-limited to |x|<FOV/2
— Band-limited to |k|<kmax

e Then,
Axr = ! pixel size for  k,,,» = NAK
NAE
FOV, = NAx
| FOV, =
@2 Ak YeLa

Radiology




Field of View

» The object repeats because...

 The Fourier summation series repeats, but
 We know the signal is space-limited,

e Therefore we truncate it.

. David Geffen UCLA

' School of Medicine Radiology



Field of View

Ak‘x p— F()lvx = ’y’Gx’At Eqgn. 5.123

FOV constraints during readout.

"NOA

1
Aky = FOVy — ’yAGyTpe Eqn. 5.123

FOV constraints during phase encoding.

David Geffen UCLA

(,x“ School of Medicine Radiology




Field of View

|
N - — |G, | At
FOV. gile
1 Eqgn. 5.123
Ak, = = ~vAG,T,.
= Fov, ~ 180T
1
AN
V|G |FOV,,
Eqgn. 5.124
AN — !
Y 4T, FOV,

David Geffen UCLA

WELAY School of Medicine Radiology




Zero Padding



Zero-Padding

e Append zeros to k-space data before FFT
— Append symmetrically about k-space

e Why?
— If N=2", then the radix-2 FFT can be used.

— Increases the “digital” resolution
— Reconstruction with correct aspect ratio

. David Geffen UCLA

School of Medicine Radiology



Asymmetric Resolution

Low-Res Data

64x64

5N David Geffen UCLA
School of Medicine

Radiology




Asymmetric Resolution

Low-Res Data

64x64

@ David Geffen UCLA
»:;—';.«""y School of Medicine

Radiology




Asymmetric Resolution

Low-Res Data Asymmetric Res
64x64 32x64

Pixels are square, but they shouldn’t be.

David Geffen UCLA

W o School of Medicine Radiology




Asymmetric Resolution

Low-Res Data Asymmetric Res
64x64 32x64

Stretched

i David Geffen U C L A

Wk School of Medicine Radiology




Asymmetric Resolution

Low-Res Data Asymmetric Res Zero-Padded

64x64 32x64 64x"64"

Stretched

UCLA

Radiology




Gibb’s Ringing



Gibb’s Ringing

 Spurious ringing around sharp edges
e Max/Min overshoot is ~9% of the intensity
discontinuity

— Independent of the # of recon points

— Frequency of ringing increases as # of recon points
Increases

 Ringing becomes less apparent

 Result of truncating the Fourier series model as
a consequence of finite sampling

e Can reduce by:
— Acquiring more data
— Filtering the data which reduces oscillations in the PSF

. David Geffen UCLA

School of Medicine Radiology



Shepp-Logan

David Geffen UCLA
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Gibb’s Ringing

KY.

64

128

256
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Gibb’s Ringing

KY. 64 128 256




Zero-Pad

KY. 64 128 256

B0
0000
000
-00/0/e

UCLA
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Windowed Reconstruction



Windowed Reconstruction
N/2—1
I(z) = Ak Z S (nAk) e?mnAke

n=—N/2

Fourier reconstruction




Windowed Reconstruction
N/2—1

I(z) = Ak Z S (nAk) e?mnAke
n=—N/2

Fourier reconstruction

N/2—1
I/\(Qf) p— Ak Z S (TLA,ZC) wneiZﬂ'nAk:B Eqn. 6.21
n=—N/2 T

Windowed Fourier

reconstruction k-space

filter/window
function UCLA




Windowed Reconstruction
I(z) =1 (z)x*h(z)

|1

Image  Object Spread
Function




Windowed Reconstruction
I(z) =1 (z)x*h(z)

|

Set This.To
o-function

Point Spread Function for a windowed Fourier reconstruction.
N/2—1

h(iIZ‘) — AL Z wn6i27rnAkx
n=—N/2

UCLA

Radiology




Hamming Filter - 1D

(n) 2 0.54 4+ 0.46 cos(2m+) —N/2<n<N/2-1
Y=Y 0 otherwise

-N/2 0 N/2-1
- David Getten UCLA

School of Medicine Radiology




Windowed Reconstruction

FWHM PSF for a Hamming windowed Fourier reconstruction.

—1
N/2—1

Wy = Z (W /wo) Ak
m=—N/2

In general w,,<wy, therefore

1
>
Wh 2 VAR

Hamming windowed Fourier reconstruction suppresses ringing,
but reduces effective spatial resolution.

UCLA

Radiology




Windowed Reconstruction

x| =
D el I

True Object Fourier Recon PSF Fourier Recon

—

X

Hamming Hamming Windowed
True Object Weighted PSF Fourier Recon

UCLA

Radiology




Hamming Filter - 2D
W(n) = wn)®wn)

ooooooooo



Hamming Filter

UCLA

Radiology




Zero-Pad

KY. 64 128 256

B0
0000
000
-00/0/e
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Hamming Window & Zero-Pad

KY.

64

128

256

KY.

64

128

256

v,
O

DO ®.
OO

DPDODO®
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