Spatial Localization - II

Daniel B. Ennis, Ph.D.

Magnetic Resonance Research Labs

David Geffen School of Medicine

Lecture #9 - Learning Objectives

- Describe the three steps required for spatial localization.
- Be able to explain the role of RF and gradients during slice selection.
- Learn to define B_{eff} for various combinations of Bfields.
- Identify the complexity of the Bloch equations for forced precession in the presence of a gradient field.
- Understand the small tip angle approximation.
- Appreciate that the small tip angle approximation works for intermediate flip angles!
- Understand what truncation artifacts are and one way to reduce them.

Lecture #10 - Learning Objectives

- Understand the small tip angle approximation.
- Appreciate that the small tip angle approximation works for intermediate flip angles!
- Understand what truncation artifacts are and one way to reduce them. Learn to describe *k*-space in words and mathematically.
- Appreciate what different points in *k*-space represent.
- Understand the connection between Fourier encoding and image acquisition.
- Be able to describe the roll of phase and frequency encoding.

Spatial Encoding

- Three key steps:
 - Slice selection
 - You have to pick slice!
 - Phase Encoding
 - You have to encode 1 of 2 dimensions within the slice.
 - Frequency Encoding (aka readout)
 - You have to encode the other dimension within the slice.

Slice Selective Excitation

Selective Excitation

• What factors control slice selection?

Gradient amplitude

Slice Selective Excitation

- What is the ideal slice profile?
- Changing the shape (envelope function) of the pulse affects the excitation bandwidth of excitation.
- How do we know which shape to use?
 - Small Tip Angle Approximation
 - ➡ Slice profile depends on the FT of the shape.

Small Tip Angle Approximation

Forced Precession with a Gradient

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

$$\vec{B}_{eff}(z,t) = \begin{bmatrix} B_1(t) \\ 0 \\ B_0 + G_z \cdot z - \frac{\omega_{RF}}{\gamma} \end{bmatrix}$$

Effective B-Field in the Rotating Frame

Coupled system of differential equations!

Small Tip Approximation

$$\begin{bmatrix} \frac{dM_x}{dt} \\ \frac{dM_y}{dt} \\ \frac{dM_z}{dt} \end{bmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ M_x & M_y & M_z \\ \omega_1(t) & 0 & \omega(z) \end{vmatrix}$$

$$\begin{aligned} \frac{dM_x}{dt} &= \omega\left(z\right)M_y & \sin\alpha \approx \alpha \\ \frac{dM_y}{dt} &= -\omega\left(z\right)M_x + \omega_1\left(t\right)M_z & \cos\alpha \approx 1 \\ \frac{dM_z}{dt} &= -\omega_1M_y & M_z\left(t\right) \approx M_0 \text{ Constant!} \end{aligned}$$

Coupled system of differential equations!

David Geffen School of Medicine Small Tip Angle Approximation

Small Tip Approximation

To the board ...

Small Tip Approximation

- 1. The excitation profile, within the small angle approximation, is just the Fourier transform of the pulse.
- 2. Remember that the Bloch equations are nonlinear and thus cannot be expected to behave linearly.
- 3. The approximation works surprisingly well even for flip angles up to 90°!

Shaped Pulses

Pauly, J. J. Magn. Reson. 81 43-56 (1989)

The small flip angle approximation still works reasonably well for flip angles that aren't necessarily "small".

Truncation Artifacts

In MRI we want pulses to be as short as possible:1) To avoid relaxation effects.2) To improve scan efficiency.

The *sinc* function is defined over all time, which is impractical in any experiment.

The *sinc* pulse needs to be truncated to be appropriate for clinical scans.

Truncation Artifacts

What happens when we truncate our pulses?

Deviations from the ideal slice profile are known as truncation artifacts.

Reducing Truncation Artifacts

Alternative Pulse Shapes

$$B_x(t) = A \exp\left[-a(t-\tau/2)^2\right]$$
 Gaussian

Reduced side-lobes, but not as flat of a slice profile.

Time Bandwidth Product (TBW)

- Time bandwidth (TBW) product:
 - Pulse Duration [s] x Pulse Bandwidth [Hz]
 - Unitless
 - # of zero crossings
 - High TBW
 - Large # of zero crossings ... fewer truncation artifacts
 - Longer duration pulse
- Examples:
 - TBW = 4, RF = 1ms
 - Excitation (RF) bandwidth?
 - Required G_z for 1cm slice?
 - TBW = 16, RF = 1ms
 - Excitation (RF) bandwidth?
 - Required G_z for 1cm slice?

k-space

image space

k-space is the raw data collected by the scanner.

- *k*-space is the raw data collected by the scanner.
 - A point in k-space tells us about the presence/absence of a spatial frequency (pattern) in the acquired image.
 - Each echo measures *many* of the spatial frequencies that comprise the object.
 - k-space has units of cm⁻¹ or mm⁻¹
 - Audio signals have units of Hertz (s⁻¹)
- Gradients
 - Help extract spatial frequency information
 - Move us around in k-space
- A line of *k*-space is filled by an echo

Gradients move us through k-space.

A point in *k*-space tells us about the presence/absence of a spatial frequency (pattern) in the acquired image.

k-space spikes

k-space

image space

A *k*-space spike creates a banding artifact.

Fourier Representation

Acquiring fewer high phase encodes decreases resolution. David Geffen School of Medicine

Uniformly skipping lines in *k*-space causes aliasing.

Spoiled Gradient Echo

Gradients move us through k-space!

MRI is slow. How do we make movies?

Segmented Cardiac Imaging

David Geffen School of Medicine

A *k*-space *segment* is a few lines of k-space.

UCLA

Segmented Cardiac Imaging

Each heartbeat acquires a unique *k*-space segment.

UCLA

Segmented Cardiac Imaging

Once all heartbeats are acquired a movie can be played.

UCLA

Phase & Frequency Encoding

Spatial Encoding

- Three key steps:
 - Slice selection
 - You have to pick slice!
 - Phase Encoding
 - You have to encode 1 of 2 dimensions within the slice.
 - Frequency Encoding (aka readout)
 - You have to encode the other dimension within the slice.

Phase Encoding

- Consists of:
 - Phase encoding gradient
 - Magnitude changes with each TR
 - Can be played with other gradients
 - Crushers, Slice-selection rephaser, readout dephasing
- Used with Cartesian imaging
- After excitation, before readout
- Adds linear spatial variation of phase
- Phase encode in
 - one direction for 2D imaging
 - two directions for 3D imaging
- Only one PE step per echo

 $G_{p}(t)$

Image

- Consists of:
 - Frequency encoding gradient
 - Constant magnitude for Cartesian imaging
 - No simultaneous
 - RF (B₁)
 - Other gradients
 - phase encoding, slice encoding, crushers
 - Readout pre-phasing gradient
 - Prepares spin phase so peak echo amplitude occurs at middle of readout (TE)
 - AKA "readout de-phasing gradient"
- Adds linear spatial variation of frequency
- Helps form an echo

chool of Medicine

David Geffen

chool of Medicine

UCLA Radiology

G_{Freq}=0

 $e^{-i\gamma t\vec{G}\cdot\vec{r}} = e^{-i\gamma\cdot 0\cdot\vec{G}\cdot\vec{r}}$

$$ec{k}\left(t
ight)=rac{\gamma}{2\pi}\int_{0}^{ au}ec{G}\left(t
ight)d au$$
 In general..

 $2\pi\vec{k}\left(t\right)=\gamma\vec{G}t$

For a constant amplitude gradient...

G_{Freq}=0

G_{Freg}=G•t

 $d\vec{r}$

N-Dimensional Imaging

MR Signal Equation

$$s(t) = \int \int_{x,y} \vec{M}_{xy}^0(\vec{r}) \cdot e^{-i\Delta\omega(\vec{r})t} \mathrm{d}\vec{r}$$

The MRI Signal Equation is the...

$$s(t) = \int \int_{x,y} \vec{M}_{xy}^0(x,y) \cdot e^{-i\Delta\omega(x,y)t} \mathrm{d}x \mathrm{d}y \quad \dots \text{2D Fourier Transform!}$$

$$\Delta \omega(x,y) = \gamma G_x \cdot x + \gamma G_y \cdot y \qquad \qquad \text{Gradients define } \Delta w$$

$$k_x(t) = \frac{\gamma}{2\pi}G_x t$$
 $k_y(t) = \frac{\gamma}{2\pi}G_y t$

k-space is convenient...

UCLA

$$s\left(k_x(t), k_y(t)\right) = \int \int_{x,y} \vec{M}_{xy}^0\left(x, y\right) \cdot e^{-i2\pi \left[k_x(t)x + k_y(t)y\right]} \mathrm{d}x \mathrm{d}y$$

$$s\left(k_x(t), k_y(t)\right) = \int \int_{x,y} \vec{M}_{xy}^0\left(x, y\right) \cdot e^{-i2\pi \left[k_x(t)x + k_y(t)y\right]} \mathrm{d}x\mathrm{d}y$$

$$s(t) = m(k_x(t), k_y(t))$$

 $m = \mathcal{FT}(M(x, y))$

Traversing *k*-space fills the *k*-space matrix, *m*.

m is filled with the Fourier coefficients of the underlying M_{xy} .

$$s(t) = \int_{object} M_{xy}(\vec{r}, 0) \cdot e^{-i\Delta\omega(\vec{r})t} \,\mathrm{d}\vec{r}$$

$$s(t) = \iint_{X,Y,Z} M(x,y,z) \cdot e^{-i\Delta\omega(x,y,z)t} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

$$\Delta\omega(x, y, z) = \gamma G_x \cdot x + \gamma G_y \cdot y + \gamma G_z \cdot z$$

$$s(t) = \iint_{X,Y,Z} M(x,y,z) \cdot e^{-i2\pi [k_x(t)x + k_y(t)y + k_z(t)z]} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

$$k_x(t) = \frac{\gamma}{2\pi}G_x t \qquad k_y(t) = \frac{\gamma}{2\pi}G_y t \qquad k_z(t) = \frac{\gamma}{2\pi}G_z t$$

Thanks

Daniel B. Ennis, Ph.D. ennis@ucla.edu 310.206.0713 (Office) http://mrrl.ucla.edu

Peter V. Ueberroth Bldg. Suite 1417, Room C 10945 Le Conte Avenue

