
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19448  | https://doi.org/10.1038/s41598-021-98567-8

www.nature.com/scientificreports

Rapid, label‑free classification 
of tumor‑reactive T cell killing 
with quantitative phase microscopy 
and machine learning
Diane N. H. Kim1, Alexander A. Lim1 & Michael A. Teitell1,2,3,4,5,6,7*

Quantitative phase microscopy (QPM) enables studies of living biological systems without exogenous 
labels. To increase the utility of QPM, machine‑learning methods have been adapted to extract 
additional information from the quantitative phase data. Previous QPM approaches focused on 
fluid flow systems or time‑lapse images that provide high throughput data for cells at single time 
points, or of time‑lapse images that require delayed post‑experiment analyses, respectively. To date, 
QPM studies have not imaged specific cells over time with rapid, concurrent analyses during image 
acquisition. In order to study biological phenomena or cellular interactions over time, efficient time‑
dependent methods that automatically and rapidly identify events of interest are desirable. Here, 
we present an approach that combines QPM and machine learning to identify tumor‑reactive T cell 
killing of adherent cancer cells rapidly, which could be used for identifying and isolating novel T cells 
and/or their T cell receptors for studies in cancer immunotherapy. We demonstrate the utility of this 
method by machine learning model training and validation studies using one melanoma‑cognate T 
cell receptor model system, followed by high classification accuracy in identifying T cell killing in an 
additional, independent melanoma‑cognate T cell receptor model system. This general approach 
could be useful for studying additional biological systems under label‑free conditions over extended 
periods of examination.

Quantitative phase microscopy (QPM) is a label-free imaging technique with increasing adoption for cell char-
acterization and identification  studies1. With advances in machine learning, high-throughput QPM enabling 
the identification of cells of interest for isolation has high potential in basic research and for translation into 
clinical  applications2–4. As previously demonstrated, combining QPM imaging with machine learning in fluid 
flow systems can increase the throughput of cellular characterization and the accuracy of classification between 
different cell  types5–7. However, single time point measurements trade throughput for evaluations of the same 
cell or collection of cells over time, which impedes studies of time-dependent biological phenomena that require 
sequential measurements. Fluid-flow systems are also incompatible with studying adherent cells in their natural 
state because the cells need to be suspended to be processed on a fluidic platform. To address these shortcomings, 
there have been several attempts to incorporate time-dependence into QPM platforms with machine learning. 
For example, Vicar and colleagues reported a 75.4% prediction accuracy for classifying lytic versus apoptotic 
cell death in human prostate adenocarcinoma cells using time-dependent sequential quantitative phase  data8.

A biological phenomenon of high interest is the cytotoxic activity of tumor-reactive T cells. The discovery of 
tumor antigen-recognizing T cells, their T cell receptors (TCRs), and cognate tumor-specific, cell surface anti-
gens is an area of intense activity in cancer immunotherapy research. Adoptive cell transfer (ACT) and chimeric 
antigen receptor (CAR), especially CAR-T cell, cancer immunotherapies have shown high clinical potential, but 
are nonetheless limited by a range of patient responses and a paucity of dependable antigen-targeting TCRs that 
specifically attack tumor  cells9. An exciting example of success in this approach is in hematologic malignancies, 
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such as specific categories of leukemia or lymphoma, which frequently show high rates of response and tumor 
regression to immunotherapy  approaches8. However, treatments of solid-tissue tumors with an adherent cell 
phenotype, such as melanoma, show patient response rate heterogeneity, with melanoma achieving one of the 
highest response rates at ~ 30%10–12.

Recent studies propose addressing burgeoning needs in time-dependent cell identification through multiple 
microfluidics and imaging approaches that utilize engineered, labeled non-adherent cellular  systems1,3. The use 
of labeling allows high levels of cellular specificity, but presents a myriad of potential complications affecting 
biological integrity. These issues include but are not limited to the potential alteration of labeled cells through 
unintended molecular interactions, selection for another unintended trait in a subset of cells under study, and 
an extra manipulation step in translational use with clinical  samples13. In particular, a method to screen for 
tumor-reactive T cells in naïve, fresh clinical samples would have broad importance for the development of new, 
targeted immunotherapies, especially in solid tumors where there is a shortage of highly specific and effective 
cancer immunotherapy  targets14. QPM has shown potential for classifying white blood cells through flow-based 
 methods15–17, however, currently there is not a time-dependent screening approach to identify T cell killing 
rapidly during image acquisition. Such an advance could span discovery stage studies in identifying new targets 
and TCRs for therapy, implementation approaches with streamlined processes for personalized therapy, and 
accessibility, with cost savings and time reductions in translational pipelines and clinical applications.

Previously, our lab quantified the label-free decrease of biomass in actively killed adherent tumor cells with 
a concurrent biomass increase in the activated T cells performing the killing over time using live cell interfer-
ometry (LCI)2–4. LCI is a label-free single-cell or cell-clump imaging application of QPM that is compatible with 
adherent and non-adherent  cells18. LCI also enabled label-free studies of different cell fates in multiple biological 
contexts using threshold-based classification schemes based on QPM imaging  features19,20. However, these prior 
studies were not easily translatable to clinical applications due to the extended time needed for post-imaging 
analysis and manual cell identification. To overcome these limitations and enable T cell killing classification, 
we provide a new rapid approach that is label-free and high-throughput using QPM with machine learning to 
monitor and identify T cell killing of target solid tumor cells. To demonstrate broad applicability of this approach 
in cancer immunotherapy, we used time-dependent input features from one adherent cancer cell line-cognate 
T cell-matched model system to train a machine-learning model that showed high classification accuracy in a 
second, independent adherent cancer cell line-cognate T cell-matched model system.

Results
Establishing a tumor cell and T cell co‑culture test system. Our study goal was to create an auto-
matic, rapid, label-free classification method using QPM data coupled to machine learning for accurate and 
reproducible identification of cells of interest. As a demonstration system, we chose to identify antigen-specific 
T cells that kill target melanoma cells. To begin, we generated a training dataset by monitoring and measuring 
changes in healthy growing tumor cells and tumor cells undergoing active killing using label-free QPM. For this 
purpose, we picked a well-characterized cytotoxic T lymphocyte (CTL) and target tumor-cell system used previ-
ously to study anti-cancer T cell  reactivity21. This system consists of M202 human melanoma cells expressing 
surface Melanocytic Antigen Recognized by T lymphocytes (MART1, aka melan-A) and F5 TCR-transduced 
CD8+ T cells that kill human leukocyte antigen (HLA) matched MART1 + M202  cells21,22.

M202 cells growing in culture were imaged using LCI before and after the addition of F5 TCR-transduced 
CD8+ T cells, with healthy melanoma cell growth prior to co-culture assessed by measurements of biomass accu-
mulation over time (Fig. 1a and Supplementary Fig. S1). Following tumor-cell growth verification, the addition 
of F5 TCR-transduced CD8+ T cells at a 2:1 ratio to M202 cells established a CTL-tumor cell co-culture system 
(Fig. 1a)23. LCI images of the co-culture system were acquired every 15 m (“Methods”). This approach enabled 
the extraction of numerous raw QPM image-derived quantitative measurements, including optical, biophysical, 
and morphological features, which were collected and assessed over time from numerous individual target cells 
and CTLs (Table 1).

Identifying QPM features for classifying T cell killing events. QPM images from the co-culture sys-
tem were organized into time tracks by connecting together consecutive measurement time points, as previously 
 described24. Each time point corresponded to a specific imaging frame that contained information in the form 
of unique, quantifiable image features that cells exhibited at that specific time point. We only considered data 
from healthy growing tumor cells that showed growth by biomass accumulation before the co-culture system 
was established to exclude cell death not attributable to CTL activity.

We manually annotated tumor cell imaging tracks to place M202 melanoma cells into two groups of clas-
sification, “alive” and “T cell killed”. In co-culture, melanoma cells had one of three observable fates. Fate 1 
was growth over time without attack by proximal CTLs. Fate 2 was growth over time with a proximal CTL 
interaction, providing a potential failed tumor-cell killing event. Fate 3 was lysis and/or a prolonged biomass or 
cell area decrease verified by manual review during or after a physical interaction with a CTL (Figs. 1b, 2a)21. 
Imaging frames in which tumor cells were growing with or without T cell interactions (fates 1 and 2) as meas-
ured by biomass accumulation classified as alive, and frames in which tumor cells were dying specifically from 
T cell activity were classified as T cell killed (fate 3). A comparison of multiple quantitative imaging features 
(Table 1) over time between alive and T cell killed tumor cells revealed unique patterns. Tumor cells killed by 
CTLs showed feature changes that began with a reduction in projected cell area and increased cell density prior 
to measurable CTL-mediated lysis, determined through biomass loss, as established previously (Fig. 2b)21. To 
take advantage of differences between T cell killed and alive tumor cell features, we trained four independent 
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machine-learning models to recognize morphological and biophysical changes that preceded CTL-mediated 
biomass loss from tumor cells.

We randomly placed collected QPM imaging features from individual M202 tumor cell tracks during co-
culture with F5 TCR-transduced CTLs into training and validation datasets. To increase the accuracy of the 
examined machine learning models, we adjusted the number of T cell killed and alive cell events for equiva-
lency in the training  dataset25. In addition, to make model training as efficient as possible, we determined the 
most potent discriminating features for accurate classification of T cell killed compared to alive tumor cells by 
testing univariate feature performance (Fig. 3a). We evaluated four standard machine-learning classification 
models that include Bayes, Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) 
for univariate classification power from the list of quantifiable QPM imaging features listed in Table 1. These 
features were then ranked according to their classification accuracy (Fig. 3a). Following feature ranking, the cor-
relation or independence between each feature was calculated and presented in grid format (Fig. 3b). To reduce 
redundancies or less informative features in the imaging data landscape, and to increase the efficiency of model 
training, we eliminated the lower-ranked features with greater than 95% correlation with higher-ranked features 
(Supplementary Table S1) Using this approach, we curated QPM imaging features employed for model training 
to the top ten least overlapping input features (Table 1, bold font). Notably, the top ten performing features by 
univariate analysis for classification accuracy turned out to be the same for all four machine learning models 
under evaluation, even though the specific ranking order differed slightly between models.

Transformation of raw QPM imaging features into machine learning model inputs. We next 
explored different feature input formats because raw data transformation can increase machine learning model 
classification accuracy. We converted raw imaging feature data into two different formats, absolute values (A) 
and percentage changes (P) from different numbers of tracking frames for each M202 target cell, including those 
that were T cell killed and those that remained  alive21,26. Absolute value inputs were the raw quantitative values 
of the feature measurements. Percent change values were derived from the differences in the absolute values of 

Figure 1.  Schematic of the experimental test system and its analyses. (a) Schematic of co-culture system and 
QPM analysis. LCI imaging of M202 cells seeded into a culture dish establishes the unperturbed tumor cell 
biomass accumulation (growth) rate. Next, F5 TCR-transduced CD8+ T cells at a 2:1 ratio to M202 cells were 
added to the culture dish. Real time image analysis by image segmentation and software-enabled tumor cell 
tracking over time generates imaging features. These features are inputs for machine-learning models that 
attempt to accurately identify and classify T cell-mediated M202 melanoma cell killing. (b) M202 melanoma 
cells lacking recognition by T cells (i), or experiencing a non-specific T cell interaction (ii), continue to 
accumulate biomass and divide. By contrast, a HLA-restricted, F5 TCR-transduced CD8+ T cell and MART1 
antigen-expressing M202 melanoma cell interaction activates tumor cell death identified by a machine-learning 
model classifier (iii).
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feature measurements from successive imaging frames divided by the raw value of the preceding measurement 
(Fig. 3c). We tested five different input formats. Absolute 1 (A1) inputs were the absolute values of the top ten 
performing features of each tumor cell at a single time point. Absolute 2 (A2) inputs were features of each tumor 
cell at two consecutive time points. Absolute 3 (A3) inputs were features of each tumor cell from three consecu-
tive time points. Percent 1 (P1) was the percent change in the top ten performing features of each tumor cell 
from two consecutive time points using values from A2 measurements. Percent 2 (P2) was the percent change in 
features of each tumor cell from three consecutive time points using values from A3 measurements (Fig. 3c). The 
transformation of raw absolute feature measurements into percent change had multiple potential benefits. First, 
this approach highlights the time-dependent change of tumor cell  features27. Second, using percent changes 
removed scaling effects for each measured feature, with an example being that measured biomass ranges in the 
hundreds of picograms compared to, for example, eccentricity, with ranges from 0 to 1. Following the transfor-
mation of absolute values into percent changes, all the measured features range on a scale of 0–100%, removing 
the effects of different feature scales on the classification (“Methods”).

Feature combinations efficiently identify tumor‑reactive T cell killing events. We tested the 
performance of different combinations of QPM measured features for rapidly identifying tumor-killing events 
using each of the four machine learning models. Using the top ten performing univariate features, we generated 
all combinations for each modeling input (e.g. A1, A2, A3, P1, and P2), which resulted in 1023 unique feature 
combinations per input type. We used these input combinations to train each machine-learning model with 
MATLAB. We plotted the classification results based on true positive rate and false positive rate into a receiver-
operator characteristics (ROC) curve. The ‘area under the curve’ (AUC) of the ROC curve is a reliable metric for 
classification  accuracy5,28–30 and was used to evaluate the training dataset classification accuracy of each trained 
machine-leaning model. To visualize the effects of specific features on classification performance, we compared 
AUC scores for the 1023 individual feature combination-trained classifications by input type, represented as 
violin plots (Fig. 4a). The highest performing classification accuracy occurred with RF for all five input types 
(p < 0.0001) (Fig. 4a). The top performing RF classification was trained using P2 input type, with an AUC of 
0.9665 (Fig. 4b).

To validate our machine-learning model choice and to ensure that the trained model is not specialized only 
for the training data, we evaluated the RF classification model on the previously partitioned validation data 
set aside for F5-TCR transduced CD8+ T cell M202 melanoma cell killing. We further split this set aside data 
into three random datasets for assessment (each containing 67 live cell events and 67 T cell killing events). The 
performances of top input feature combinations for RF classification across different input types were statisti-
cally indifferent. P2 was chosen as the preferred input type because of its high mean AUC and smallest data 
spread using different feature combinations (Fig. 4c). P2 input features of the highest performing RF classifier 
included percent change in perimeter, major axis, maximum intensity, distance, and relative distance from three 

Table 1.  Quantifiable features evaluated from QPM imaging data. Bolded are top ten parameters used for final 
evaluations.

Feature Description Type

Max intensity Maximum measured optical density per pixel in the given segmented area

OpticalMin intensity Minimum measured optical density per pixel in the given segmented area

Mean phase shift Average optical density averaged over the given segmented area

Area Total segmented area of the cell

Biophysical

Biomass Dry mass of the cell, summed over the given segmented area

Distance Displacement by a cell in between consecutive frames

Relative distance Distance divided by the area of the cell

X-Coordinate Coordinate along the X-axis of the frame of the center of the cell region

Y-Coordinate Coordinate along the Y-axis of the frame of the center of the cell region

Convex area Area of the smallest convex polygon that can contain the cell region

Morphological

Eccentricity The ratio of the distance between the foci of the ellipse and its major axis length. The value is 
between 0 and 1

Equivalent diameter Diameter of a circle with the same area as the region. Computed as sqrt(4 × Area/pi)

Extent Ratio of region area to area of the total bounding box. Area/Area of the bounding box

Filled area Area of a rectangular box encasing the cell region

Major axis Length of the major axis of the ellipse encapsulating the cell region

Minor axis Length of the minor axis of the ellipse encapsulating the cell region

Orientation Angle between the x-axis and the major axis of the ellipse encircling the cell. The value is in 
degrees, ranging from − 90° to 90°

Perimeter Distance around the boundary of the region

Perimeter 2 Perimeter with different edge weights in segmentation

Shape factor Area divided by its circumference or the length of its perimeter, P, (4πA/P)

Solidity Proportion of the area in the convex hull that are also in the region. Computed as Area/Convex 
Area
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consecutive QPM imaging time points. Classification of the set aside validation data showed an average AUC 
of 0.97 for identifying F5 TCR-transduced CD8+ T cell killed M202 melanoma cells, providing confidence that 
the highly accurate classification performance was not specific for the training data.

Trained model identifies T cell killing events in an independent system. A valuable machine 
learning classifier should perform well in multiple situations with similar input features without additional train-
ing. To evaluate the performance of the RF model with P2 type input features with no additional training, we 
picked a second, independent CTL-tumor cell co-culture demonstration system. This second system consists 
of slower growing M257-A2 melanoma cells engineered to express the cancer-testis antigen NY-ESO-1, and 
CD8+ T cells transduced with a cognate TCR that recognizes the NY-ESO-1 target tumor cell antigen. We used 
the same experimental set up, with growth established for M257-A2 tumor cells by measurements of biomass 
accumulation preceding the addition of CTLs recognizing the NY-ESO-1 tumor antigen, followed by mixed 
cell co-culture and LCI imaging over time (Fig. 5a). We processed the raw QPM imaging data from this second 
independent co-culture system in the same way as the F5 TCR-transduced CD8+ T cell, M202 melanoma co-
culture system for classification.

With this second independent system, we simulated a clinically relevant biological sample that typically has 
a very low frequency of tumor-killing T cells by randomly assigning M257-A2 QPM imaging data into multi-
ple datasets to represent a range of prevalence for tumor-killing T cells. The resultant in silico datasets ranged 
from one NY-ESO-1 TCR-transduced CD8+ T cell interaction (T cell killed) to one non-specific CD8+ T cell 
interaction (Alive), up to 1:100,000 T cell killed to Alive tumor cells, in multiple of 10 increments. We used the 

Figure 2.  Progression of the quantitative phase density map during tumor-reactive T cell mediated killing and 
top ten extractable QPM features. (a) Representative LCI images of a single F5 TCR-transduced CD8+ T cell 
killing a MART1 + M202 melanoma cell over time. Phase density and mass distribution is shown in color scale 
ranging from 0 (background) to 2 pg/nm2. (b) Heat map of the top ten extracted QPM features of target cells 
for alive cell events versus T cell killed events. Each row represents an individual cell, and each major column 
represents a tumor cell feature. Each sub-column is a QPM image collection time point, here represented by 
3 sub-columns for each imaging feature spanning 30 m. Tumor cell features in T cell killing events have more 
pronounced differences between imaging frames than alive tumor cell features, which are represented by 
changes in color intensity.
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RF model with P2 inputs listed above trained solely on F5-TCR transduced CD8+ T cell, M202 melanoma data 
(Supplementary Table S2).

We observed accurate identification of T cell killed M257-A2 tumor cells over the range of CTL dilution, 
from 1:1 to 1:100,000, with AUC values consistently > 0.95 for NY-ESO-1 TCR-transduced CD8+ T cell killing 
of M257-A2 melanoma target tumor cells (Fig. 5b,c). This in silico exercise simulates accurate identification of 
T cell killing events in an independent mixed cell system without requiring the generation of new training data 
or retraining another machine learning classification model. It also demonstrates the potential to identify very 
rare tumor killing T cells within excised tumor sample materials using QPM and machine learning.

Discussion
Clinical or translational applications in cell identification that incorporate machine learning would benefit from 
minimal perturbations or handling of biological samples, and from classification methods that are compatible 
with cell isolation and recovery. Classification schema should not require time- or material-intensive retraining 
for each independent, but stylistically related dataset, and should be applicable to a range of cell types. This is a 
special concern for the machine learning field, where a machine learning model trained on a specific training 
dataset may not work for different samples without  retraining31. In the context of personalized cell therapy, cell 
identification and recovery should be fast to minimize turnaround time for patients in developing and deliver-
ing needed therapies.

One of the roadblocks for applications of machine learning in translational settings is the sheer size of good 
quality data required to train and validate a machine learning model. When exploring inputs for machine learn-
ing classifiers with biological applications, a common practice is to input as many features as possible to increase 

Figure 3.  Univariate feature performance for classification. (a) Ranking of QPM features based on AUCs from 
univariate classification. (b) Heat map visual of a pairwise correlation matrix between 19 QPM imaging features 
analyzed by data extraction from quantitative images. Diagonal boxes represent autocorrelation of the feature 
with itself, with a value of 1. (c) Graphical representation of quantitative feature transformation. Absolute feature 
measurements are raw quantitative values of each feature collected from each LCI imaging frame. Percent 
changes were calculated from absolute feature measurements by dividing the difference of feature values from 
consecutive imaging frames by the feature value of the preceding frame.
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classification strength. Due to the relationship between statistical prediction power and the number of features 
in a training dataset, larger amounts of data are used to compensate for long lists of input features. However, for 
many clinical applications that involve low abundance or rare cells or events, a large number of data points may 
not be available for vigorous training. Therefore, important goals include (1) increasing the efficiency of training 
a classifier and (2) increasing the general applicability of a trained classifier for use with multiple different but 
stylistically related datasets.

Here, we used quantifiable features from serial QPM images as inputs for machine learning models and 
curated the number of features to reduce information redundancy. This approach achieved high prediction 
power from a relatively low number of training samples and identified a biological activity of interest, CTL 
killing of target tumor cells, without labels. Our classification approach including QPM features was also supe-
rior to running the same ML algorithms using two-dimensional-only features (Supplementary Fig. S2). To the 
best of our knowledge, this study is the first to show adherent tumor cell killing by tumor-specific T cells in 
label-free conditions over time, thereby expanding potential applications for QPM with machine learning. Our 
approach shows a high classification accuracy identifying T cell tumor killing in a mixed co-culture system 
(AUC > 95%)8,31,32. In this report, we demonstrated that the same classifier trained on just one T cell and cancer 
cell pair can achieve high classification accuracy in another, independent T cell and cancer cell pair. Looking to 
applications in additional T cell, cancer cell systems we suggest that optimization of our approach could require 
modulating data input combinations and temporal sampling cadence between measurements to account for dif-
ferences in biological characteristics of the system. Such differences could include TCR affinity for target cancer 

Figure 4.  Training and validation performance of 1023 feature combinations using four different machine-
learning models and input types. (a) Classification performance of models on training data. Each violin plot 
shows the performance of all 1023 feature combinations (n = 1023) used to train the model. Plots are not drawn 
to scale. ****denotes p < 0.0001. (b) ROC curve of the top performing feature combinations based on training 
data. The top classifier was a RF machine-learning model with input type P2, yielding an AUC of 0.9665. (c) 
Classification performance of top-performing RF models using the five data input types from three randomly 
populated QPM feature validation datasets. Percent 2 (Per2) showed the highest mean AUC and smallest 
standard deviation.
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cells, T cell and cancer cell types, the influence of other surface ligands or extracellular matrix, and others. Our 
proof of concept study that incorporates QPM, machine learning, label-free monitoring, and data analyses could 
enable future studies that combines automated cell picking to isolate and study T cells of interest, such as cloning 
tumor-reactive TCRs for additional opportunities in cancer immunotherapy.

Methods
Cells. M202 and M257-A2 HLA A2.1-restricted melanoma cell  lines33,34, and cognate CD8+ T cell trans-
duced anti-MART-1 and anti-NY-ESO-1  TCRs21,34,35 were obtained from the laboratory of Dr. Antoni Ribas 
(UCLA). We maintained melanoma cell lines in RPMI 1640 medium (ThermoFisher Scientific, Cat. #10040) 
supplemented with 10% Fetal Bovine Serum (FBS, Omega Scientific, FB-11), 0.7 mM non-essential amino acids 
(Gibco, Cat. #11140-050), and penicillin and streptomycin antibiotics (ThermoFisher Scientific, Cat. #15070063). 
T cells were maintained in C10 media (RPMI 1640 supplemented with 10% (v/v) FBS, 1% (v/v) Penicillin/Strep-
tomycin, 10 mM HEPES, 50 μM β-mercaptoethanol, 1 × MEM NEAA, and 1 mM sodium pyruvate). with 10 µg/
mL IL-2 (Peprotech, Cat #200). Cultured cells were routinely tested for mycoplasma with the Lonza Mycoalert 
Mycoplasma Detection Kit. Tumor cells were passaged at 85–90% confluency and maintained at 37 °C, 5%  CO2.

Co‑culture. Culture dishes (u-Dish 35 mm, low, u-Slide 4 well Ph+, ibidi) were coated with poly-l-lysine 
(Sigma-Aldrich, Cat. #P4832) for 1 h before seeding with M202 or M257-A2 melanoma cells at 1.8 ×  104 cells/
ml. We transferred dishes with tumor cells to the LCI/QPM microscope stage, where they were imaged in the 
cell culture chamber to ensure healthy growth before T cells were added at a T cell to tumor cell ratio of 2:1. 

Figure 5.  NY-ESO-1 TCR-transduced CD8+ T cell killing of M257-A2 melanoma tumor cells. (a) 
Representative images of a M257-A2 melanoma cell undergoing HLA-A2.1 restricted, anti-NY-ESO-1 antigen 
CTL mediated killing. (b) ROC curves using the RF model for the listed ratios of T cell killed to alive tumor cell 
classifications. (c) Classification performance by AUC of 30 randomly grouped datasets at the listed T cell killed 
to alive tumor cell ratios. We attribute outliers in 1:100,000 dilution group as having only one T cell killing event 
in the dataset, which was misclassified as alive.
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After 45 m passed to ensure that T cells settled into the plane of imaging, QPM data collection resumed for a 
total average period of 8–12 h.

QPM image acquisition and processing. Microscopy was performed on a Zeiss Axio Observer A1 with 
stage-top incubation system (Zeiss). We performed quadriwave lateral shearing interferometry (QWLSI) quan-
titative phase imaging using a 20 × 0.4 NA objective. QPM data were captured with a SID4Bio QWLSI (Phasics) 
camera, which has an acquisition rate of 10 frames per  second36. We acquired consecutive images at each loca-
tion every 15 m for 8–12 h for 60 locations in the cell culture plate, with enough spacing between cells to enable 
successful image processing and segmentation. Custom MATLAB code was written to automatically process 
each new QPM image as the acquired image file was added to the directory. Feature analysis was performed 
using custom MATLAB scripts, as previously  described37. Briefly, cells were segmented from the background 
using a combination of local thresholding and edge detection. Cell biomass was then computed from QPM data 
using an assumed cell average-specific refractive increment of 1.8 ×  10− 4  m3/kg19,38. Individual cell information 
from the newest time point image were combined with those from two preceding time points and categorized 
into tracks based on a particle tracking  code21,25. The track based on three time point frames was arranged into 
different input types (A1, A2, A3, P1, P2) and used as inputs for the classification. For the purpose of this study, 
we excluded non-single tumor cells in clusters of two or more, and tumor cells without biomass accumulation 
prior to co-culture with T cells, and their imaging tracks, from the analyzed datasets. Tumor cells showing bio-
mass accumulation after commencement of co-culture with T cells were included as potential false positive T 
cell killed tumor cells. Each image processing and analyses event averaged < 2 m, starting from acquisition of the 
third time point image, through image analyses, to the end-result classification.

Input type transformation. To generate percent change inputs (P1 and P2), the following formula was 
used:

where %� denotes percent change, x represents a quantitative (absolute) feature measurement, and subscripts 
n and n+ 1 represent consecutive imaging frames. Therefore, input P1 ( %�1 ) represents the percent change in 
raw feature values (A) calculated from the second and first imaging frames, such that:

Inputs that use data from more than one frame (i.e. A2, A3, P2) included the cumulative information from 
all the preceding frames. For example, A2 was comprised of absolute feature measurements from the second 
and first imaging frames, and P2 was comprised of percent changes calculated from third and second imaging 
frames, as well as P1, calculated from the second and first imaging frames.

Manual dataset annotation. We classified tumor-specific T cell killing of M202 and M257-A2 melanoma 
cells in their respective co-culture experiments by manual review of LCI/QPM imaging frames. The require-
ments for classification as a T cell killed tumor cell were: (1) biomass accumulation prior to co-culture with T 
cells, (2) a visual interaction with a T cell, and (3) a decline in biomass and/or death by deformation or cell lysis. 
Tumor cells in co-culture that showed growth, including cell divisions, and non-killing interactions with T cells 
with continued biomass accumulation over time were classified as alive. This validated manual classification 
schema was previously  reported21.

Machine‑learning model training. We used manually classified QPM data from F5 TCR-transduced 
CD8+ T cell, M202 melanoma cell co-cultures to train Bayes, LR, SVM, and RF machine-learning models with 
the MATLAB Statistics and Machine Learning Toolbox. From all QPM collected data, we randomly selected 
a subset for model training and set aside a subset for validation studies. For the training dataset, we used 200 
QPM imaging tracks of alive, and 200 imaging tracks of T cell killed, tumor cells. Each imaging track contained 
information from at least three consecutive time points for each tumor cell. For validation studies, we further 
subdivided the randomly set aside QPM data into three randomly selected datasets of 67 alive and 67 T cell killed 
tumor cell tracks. AUC was calculated using MATLAB and plotted using Prism (Graphpad).

In silico dilution. We generated a dilution series of NY-ESO-1 TCR-transduced CD8+ T cells to M257-A2 
melanoma tumor cells from 61 T cell killed and 121,328 alive tumor cell tracks using custom MATLAB code to 
randomly mix and assign cells to 30 different datasets at the T cell to tumor cell ratios listed in Fig. 5b,c. 1:1 ratio 
datasets included 50 randomly selected T cell killed and 50 randomly selected alive cases. Similarly, 1:10 ratio 
datasets contained 50 randomly selected T cell killed and 500 randomly selected alive cases, and so on.

Statistical analysis. Two-tailed unpaired student’s t-tests and one-way analysis of variance were used to 
test significance between different classification performance groups.

%�n = (xn+1 − xn)
/

xn
,

P1 = (A2 − A1)
/

A2
.
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