Imperfections & Artifacts

Daniel B. Ennis, Ph.D.

Magnetic Resonance Research Labs

http://www.ajronline.org/doi/pdf/10.2214/ajr.182.2.1820532

Class Business

- Thursday (2/23) from 6-9pm
 - 6:00-7:30pm Groups
 - Avanto
 - Binru Chen, Junjie Chen, Yuhua Chen
 - Skyra
 - Jie Fu, Qihui Lyu, Cass Wong
 - Prisma
 - Nyasha Maforo, Fadil Ali, Vahid Ghodrati
 - 7:30-9:00pm Groups
 - Avanto
 - Sara Said, Yara Azar, April Pan
 - Skyra
 - Timothy Marcum, Diana Lopez, Zhaohuan Zhang
 - Prisma
 - Daisong Zhang, Jingwen Yao, Fang-Chu Lin, Andy Vuong
- BRING THE COMPLETED SCREENING FORM
- Re-grade opportunity.

Lecture #13 - Learning Objectives

- Understand how to combine data from several receiver channels.
- Appreciate how the final image is obtained from the sum over all sampled spatial frequency (Fourier) patterns.
- Define how the field-of-view and the number of acquired data points impacts spatial resolution.
- Describe the parameters that control the field of view.
- Understand the applications of zero padding and windowed reconstructions.
- Identify sources of Gibb's ringing.

Uniformly skipping lines in *k*-space causes aliasing.

Acquiring fewer high phase encodes decreases resolution.

Radiologv

Lecture #13 Summary

							-	
							-	
							_	

Fourier Reconstruction Formula (Eqn. 6.20)

Artifacts

Artifacts

- Aliasing
- Gibb's Ringing
- Noisy spike artifacts
- Noise
- Chemical shift
- Motion Artifacts
- Metal artifacts
- Gradient Non-linearity
- Data clipping
- RF interference
- And more...

Noise

Signal-to-Noise Ratio

Signal-to-Noise Ratio

• SNR – Signal-to-noise ratio

- **Signal** Mean signal intensity in ROI. Assumes:
 - 1) Tissue homogeneity
 - 2) Noise is only source of variance
- Noise SD of background ROI outside object. Assumes:
 - 1) Noise is only source of variance

This method of measuring the SNR is widespread, but imperfect.

Signal-to-Noise Ratio

$SNR \triangleq \frac{\text{signal amplitude}}{\text{standard deviation of noise}}$

- SNR Signal-to-noise ratio
 - Signal Mean signal intensity in ROI
 - Noise Standard deviation of noise
- CNR Contrast-to-noise ratio
 - Signal Difference
 - Difference between mean signal intensity in two ROIs
 - Noise Standard deviation of noise

$CNR \triangleq \frac{\text{signal difference}}{\text{standard deviation of noise}}$

What is the FT of noise? Noise.

To The Board...

Signal-to-noise Ratio

Large Voxels (Low Resolution)⇔High SNR

Long Scan Time⇔High SNR

High Resolution + Fast Imaging Severely Compromises SNR

Signal-to-noise Ratio $SNR \propto V\sqrt{t}$

- V Voxel Volume
 - Slice-thickness (h) x X-res x Y-res
 - X-res = FOV_x/N_{kx}
 - Y-res = FOV_y/N_{ky}
- t Data acquisition time
 - (N_{kx} x N_{ky} x N_{averages})/bandwidth

Signal-to-noise Ratio $SNR \propto V \sqrt{t}$

• Example #1

- Halving slice thickness requires 4x averages to maintain SNR
- Example #2
 - Doubling slice thickness requires 25% time to maintain SNR

• Example #3

- FOV is, in general, fixed.
- To increase resolution we increase N_{kx} or N_{ky} .
- This results in increased scan time, but
- The SNR decreases.

Parallel Imaging and SNR $SNR_{P.I.} = \frac{SNR}{g\sqrt{R}}$

- g geometry factor
 - Loss associated with coil noise-correlation
 - For R=1, g=1
 - For R=2, g=~1.1-1.5
- R reduction or acceleration factor
 - Loss associated with scan time reduction
 - Typically ~1/2 N-coils
- SNR for P.I. is spatially dependent – Higher in areas of aliasing

Parallel imaging has additional SNR penalties, but decreases scan time.

Impact of Acceleration

P. Kellman (NIH)

High acceleration rates lead to local noise amplification.

Readout Bandwidth

Receiver Bandwidth

• Receiver Bandwidth (RBW, ∆f)

- The range of frequencies across the FOV
 - ±kHz [range across FOV]
- Alternately range of frequencies per pixel
 - Pixel bandwidth [Hz/pixel]
- ...during *readout*.

$$\Delta f = \frac{1}{2} \frac{\gamma}{2\pi} G_x \cdot FOV_x$$

User can pick 2 of 3 (Δf , G_x, FOV_x)

Temporal Nyquist Sampling Requires: $\Delta t = rac{1}{2\Delta f}$

k-space Nyquist Sampling Requires: $\Delta k_x = \frac{\gamma}{2\pi}G_x\Delta t$

$$\Delta k_x = \frac{1}{FOV_x}$$

$$N_x \cdot \Delta k_x = \frac{N_x}{FOV_x} = \frac{1}{\Delta x}$$

Receiver Bandwidth

• High Receiver Bandwidth (RBW, Δf)

- Stronger gradients
- Larger range of frequencies across the FOV (or pixel)
- Less chemical shift (smaller freq. difference per pixel)
- Lower SNR (shorter acquisition time)
- Shorter TE (move across k-space faster)

$$\Delta f = \frac{1}{2} \frac{\gamma}{2\pi} G_x \cdot FOV_x$$

User can pick 2 of 3 (Δ f, G_x, FOV_x)

Temporal Nyquist Sampling Requires: $\Delta t = rac{1}{2\Delta f}$

k-space Nyquist Sampling Requires: $\Delta k_x = \frac{\gamma}{2\pi}G_x\Delta t$

$$\Delta k_x = \frac{1}{FOV_x}$$

$$N_x \cdot \Delta k_x = \frac{N_x}{FOV_x} = \frac{1}{\Delta x}$$

Chemical Shift

Chemical Shift Artifact

- Gradients provide linear variation in frequency
- Fat has a 3.5ppm lower frequency than water
 - 222Hz @ 1.5T and -444Hz @ 3.0T
- Scanner detects frequency, then maps to position
- Scanner "assumes" everything is water, therefore fat (lower frequency) is interpreted as lower frequency (shifted position) water.

Chemical Shift Artifact

Readout

$BW = \pm 4kHz$

 $BW = \pm 8kHz$

$BW = \pm 16 kHz$

Solution

- High bandwidth pulse sequences
 - Degrades SNR (reduces acquisition time)
 - Reduces chemical shift artifact
- Fat saturation pulses/techniques

Motion Artifacts

Motion in MRI

- Motion is responsible for a corruption in spatial localization in PE direction, resulting in a blurring and/or ghosting artifacts
- Typical types of motion in body
 - Patient motion
 - Respiration
 - Cardiac motion and vascular pulsation
 - Peristalsis & bowel gas
- Recording signal in *k*-space not image domain!

Slow/Bulk Motion

Examples:

- Respiration
- Feet motion
- Swallowing

Slow/Bulk Motion

MR Image with Motion Artifacts

Frequency-space (k-space)

MR Image with Motion Artifacts

Breathing (Motion) Artifacts

Free Breathing

Breath held

Free Breathing

Motion artifacts appear in the phase encode direction.

Remedies (and Penalties)

- Possible solutions?
 - Breath-holding
 - Respiratory gating
 - Reduces body movements
 - Patient coaching, physical restraint, sedation

Disadvantages

- Requires fast sequences
- Increases the scan time; restricts the available TRs
- Patients acceptance and discomfort

Periodic Motion

Examples:

- Aortic Pulsation
- Arterial Pulsation

Periodic Motion

MR Image with Motion Artifacts

Static Part

Periodic Motion

Moving Part

Static Part

MR Image with Ghosting Artifacts

Moving Part

MR Image with Ghosting Artifacts

Moving Part

Remedies (and Penalties)

- Possible solutions?
 - Cardiac gating ± segmented imaging.
 - Signal suppression of moving tissues.
 - Swapping phase-encoding and frequency encoding directions
- Disadvantages
 - Increases scan time.
 - Increases TR (due to preparation pulses).
 - Only shifts the artifacts.

Metal Artifacts

Frequency Encoding Artifacts Frequency δf Position δx

$$\delta x = \frac{2\pi\delta f}{\gamma G_x}$$

Severe Off-Resonance

Normal Spins

$$\xrightarrow{}$$

Off-Resonant Spin

Severe Off-Resonance

- Basic <u>assumption</u> in MRI is that the z-component of the B-field created by the gradient coils varies <u>linearly</u> with x, y, or z over the FOV.
- Higher gradient amplitudes and slewrates can be achieved by compromising on spatial linearity.
- Gradient non-linearity causes geometric <u>and</u> intensity distortions.

The mapping between position (x) and frequency (f) becomes non-linear. The mapping between Δx and Δf becomes non-linear.

Image Courtesy of M.T. Alley & B.A. Hargeaves

Gradient Roll-off

Spins outside the desired FOV, if excited and near to the coil can become spatially mis-encoded.

Solution

- Image warping parameters that are system specific and applied to all images.
 - Works well qualitatively.
 - Can be problematic quantitatively.
- Transmit (B₁) coils with coverage over smaller volumes.
- Receiver coil (B_r) sensitivity only over ROI.

Data Clipping

Data Clipping

- Received signal saturates the receiver.
- Peak signal usually in the middle of *k*-space, therefore lose low spatial frequency information:
 - Contrast
 - Intensity
- Pre-scan procedure usually avoids data clipping by adjusting receiver gains.

Data Clipping

Radio Frequency Interference

RF Shielding

- RF fields are close to FM radio
 - ¹H @ 1.5T \Rightarrow 63.85 MHz
 - ¹H @ 3.0T \Rightarrow 127.71 MHz
 - KROQ \Rightarrow 106.7 MHz
- Need to shield local sources from interfering
- Copper room shielding required

Penetration Panel

Penetration Panel

x

:0

8

0

 \otimes

8

 \otimes

X

⊗

Radiofrequency Interference

- Caused by RF leak
 - Scanner Door is Open
 - Wires running in/out of scan room
 - Faulty Room Shielding

David Geffen Tmages Courtesy of <u>http://chickscope.beckman.uiuc.edu/roosts/carl/artifacts</u> School of Medicine Radiology

How many artifacts can you see?

How many artifacts can you see?

Noise Gradient Distortion Gibb's Ringing Chemical Shift Coil shading

Gradient Echoes & Fat

Water Spins in a Uniform Field

Water Spins in a Gradient Field

Water & Fat Spins in a Gradient Field

GRE & Fat/Water Frequency Low Bandwidth High Bandwidth

GRE and Fat/Water Phase

- Pixels are frequently a mixture of fat and water
- Pixel intensity is the vector sum of fat and water

The TE controls the phase between fat and water.

GRE and Fat/Water Phase In-Phase

Opposed-Phase

Which image is the in-phase image?

Images Courtesy of Scott Reeder

Which image is the in-phase image?

In-Phase

Opposed-Phase

Images Courtesy of Scott Reeder

Gradient Echoes & Fat Suppression

• Why is fat suppression/separation important?

- Fat is bright on most pulse sequences.
- But so are many other things...
 - CSF & edema
 - Flowing blood
 - Contrast enhanced tissues

Fat obscures underlying pathology

– Edema, neoplasm, inflammation

• How can fat be eliminated in GRE images?

- Fat saturation pulses
- Multi-echo acquisitions
 - Dixon/IDEAL

Fat Suppression

FIGURE 4.15 An example of using a spectrally selective pulse to suppress lipid signals in an imaging sequence. The 90° spectrally selective pulse (shaded area to denote the frequency offset), usually with maximal phase dispersion, is applied ~217 Hz offresonance with respect to the water resonant frequency to excite lipids at 1.5 T. The lipid signals are dephased by one or more spoiler gradients. After lipid suppression (portion to the left of the dotted vertical line), an imaging sequence is executed to excite water signals and form a water image (portion to the right of the dotted vertical line).

Radiology

Fat Suppression

Fat-Sat Can Be Spatially Non-Uniform

Fat-Sat Image

Images Courtesy of Scott Reeder

GRE & Fat/Water Separation - How?

UCI

Radiology

GRE & Fat/Water Separation - How?

Gradient Echoes & Fat/Water Separation

Water Image

Fat Image

Images Courtesy of Scott Reeder

Gradient Echoes & Fat/Water Separation

Imperfect Fat Sat

Water Image

In-Phase

Fat Image

Opposed-Phase

Images Courtesy of Dr. Scott Reeder

Thanks

DANIEL B. ENNIS, PH.D. ENNIS@UCLA.EDU 310.206.0713 (OFFICE) HTTP://ENNIS.BOL.UCLA.EDU

PETER V. UEBERROTH BLDG. Suite 1417, Room C 10945 Le Conte Avenue

