MRI Systems II - B1

Lecture \#3 - January 15th, 2018

Lecture 2 - Summary

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu} \times \vec{B} \quad \vec{s}=\vec{r} \times \vec{p} \\
& \frac{d \vec{\mu}}{d t}=\vec{\mu} \times \gamma \vec{B} \quad \vec{M}=\sum_{n=1}^{N_{\text {total }}} \\
& \vec{\mu}_{n} \\
& M_{x}(t)=M_{x}^{0} \cos \left(\gamma B_{0} t\right)+M_{y}^{0} \sin \left(\gamma B_{0} t\right) \\
& M_{y}(t)=-M_{x}^{0} \sin \left(\gamma B_{0} t\right)+M_{y}^{0} \cos \left(\gamma B_{0} t\right) \quad d \vec{M} \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \\
& \text { Equation of Motion for the bulk magnetization. } \\
& M_{z}(t)=M_{z}^{0} \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma\left(\overrightarrow{B_{0}}\right) \\
& \vec{B}_{0}=B_{0} \vec{k}
\end{aligned}
$$

David Geffen
School of Medicine

Lecture 2 - Summary

- Free Precession in the Laboratory Frame
- Forced Precession in the Laboratory Frame
- Coordinate system anchored to scanner
- Free Precession in the Rotating Frame
- Forced Precession in the Rotating Frame
- Coordinate system anchored to spin system
...all without relaxation.
- a) Relaxation time constants are "really" long
- b) Time scale of event is << relaxation time constant

Dipoles to Images

MRI Systems II - B1

Lecture \#3 - January 15th, 2018

Lecture \#3 Learning Objectives

- Distinguish spin, precession, and nutation.
- Appreciate that any B-field acts on the the spin system.
- Understand the advantage of a circularly polarized RF B-field.
- Differentiate the lab and rotating frames.
- Define the equation of motion in the lab and rotating frames.
- Know how to compute the flip angle from the B1-envelope function.
- Understand how to apply the RF hard pulse matrix operator.

B1 Field - RF Pulse

- \mathbf{B}_{1} is a
- radiofrequency (RF)
- $42.58 \mathrm{MHz} / \mathrm{T}(63 \mathrm{MHz}$ at 1.5 T$)$
- short duration pulse (~ 0.1 to 5 ms)
- small amplitude
- $<30 \mu \mathrm{~T}$
- circularly polarized
- rotates at Larmor frequency
- magnetic field
- perpendicular to B_{0}

Resonance

Ensemble of Precessing Spins

"The equilibrium magnetization is stationary, so even though the individual spins are precessing, there is no net emission of radio waves in equilibrium."

Resonance

- Quantum Physics
- Electromagnetic radiation of frequency $\omega_{R F}$ carries energy that induces a coherent transition of spins from N_{\uparrow} to N_{\downarrow}
- Classical Physics
- $\vec{B}_{1}(t)$ rotates in the same manner as the precessing spins.
- Coherently "pushes" on bulk magnetization.

Resonance Condition (Quantum)

$$
\Delta E=E_{\downarrow}-E_{\uparrow}=\hbar \gamma B_{0} \quad E_{R F}=\hbar \omega_{R F}
$$

Zeeman Splitting
Planck's Law

$$
\begin{gathered}
\hbar \gamma B_{0}=\hbar \omega_{R F} \\
\omega_{R F}=\gamma B_{0}=\omega_{0}
\end{gathered}
$$

Resonance Condition

Resonance requires that the frequency of the RF energy
$\left(\omega_{R F}\right)$ match the frequency of precession (ω_{0}).

Resonance Condition (Classical)

"Establishment of a phase coherence among these 'randomly' precessing spins in a magnetized spin system is referred to as resonance."

- Liang \& Lauterbur p. 69
$N_{\uparrow} \approx N_{\text {total }} \times\left(1+2.25 \times 10^{-6}\right)$

$N_{\downarrow} \approx N_{\text {total }} \times\left(1-2.25 \times 10^{-6}\right)$
http://www.drcmr.dk/MR

RF Birdcage Coil

MRI Hardware

RF Birdcage Coil

- Most common design
- Highly efficient
- Nearly all of the fields produced contribute to imaging
- Very uniform field
- Especially radially
- Decays axially
- Uniform sphere if $\mathrm{L} \approx \mathrm{D}$
- Generates a "quadrature" field
- Circular polarization

RF Excitation - Lab Frame

RF pulses can generate transverse magnetization (M_{xy}).

RF Excitation - Lab Frame

RF Birdcage Coil

Birdcage coils are used to generate low SAR [W/kg] circularly polarized RF B_{1}-fields.

RF Birdcage Coil

In the absence of any applied RF the bulk magnetization is oriented along the z-axis.

Capacitors Endrings Rung

RF Birdcage Coil

Current into page.

A current $\left(I_{1}\right)$ induces a left-handed nutation about the B_{1}-field.

RF Birdcage Coil

Precession from B_{0} advances the spin clockwise (left hand rule).

Capacitors Endrings Rung

RF Birdcage Coil

B_{1} nutation from I_{2} generates more $M_{x y}$.

RF Birdcage Coil

$$
I_{n}(t)=I_{0} \sin \left(\omega_{R F} t-\frac{2 \pi(n-1)}{N_{\text {Rungs }}}\right) \quad \begin{aligned}
& \text { Current in the } \mathrm{n}^{\text {th }} \text { rung. } \\
& \text { Creates a CW B1-field. }
\end{aligned}
$$

RF Birdcage Coil

Capacitors Endrings Rung

$$
I_{n}(t)=I_{0} \sin \left(\omega_{R F} t-\frac{2 \pi(n-1)}{N_{R u n g s}}\right)
$$

Current in the $n^{\text {th }}$ rung. Creates a CW B1-field.

Consider reading Chp. 16.3 in Haacke.

B_{1} Inhomogeneity

B_{1} Inhomogeneity: Imperfect B_{1} amplitude as a function of spatial position.

Sources:

- Hardware imperfections.
- Conductivity \& permittivity of subject/object [1].
- Wavelength effects.

Fig. 5. Signal loss due to inhomogeneous flip-angle distribution at 3T. (a) Wavelength effects result in reduced signal intensity in the abdomen (arrows). (b) This effect can in some cases be reduced by manually increasing the RF-transmitter amplitude (here by 50%) and by applying image post-processing filters to obtain more uniform image intensities. Images courtesy of W. Horger, Siemens Medical Solutions, Germany [2]

SAR, Polarization, and B_{1} Safety

SAR Limitations

- Specific Absorption Rate
- Measure of the rate of energy absorption during exposure to a RF electromagnetic field
- Measured in units of [W/kg]
- High-field (>1.5T) imaging with high flip angles ($>45-90^{\circ}$) can be challenging.

$$
\mathrm{SAR} \propto \omega_{0}^{2} B_{1}^{2} \propto B_{0}^{2} \alpha^{2}
$$

SAR Limits

Limit	Whole-Body Average	Head Average	Head, Trunk Local SAR	Extremities Local
IEC (6-minute average)				
Normal (all patients)	$\begin{aligned} & 2 \mathrm{~W} / \mathrm{kg} \\ & \left(\mathrm{o} .5^{\circ} \mathrm{C}\right) \end{aligned}$	3.2 W/kg	$10 \mathrm{~W} / \mathrm{kg}$	$20 \mathrm{~W} / \mathrm{kg}$
First level (supervised)	$4 \mathrm{~W} / \mathrm{kg}\left(1^{\circ} \mathrm{C}\right)$	3.2 W/kg	$10 \mathrm{~W} / \mathrm{kg}$	$20 \mathrm{~W} / \mathrm{kg}$
Second level (IRB approval)	$4 \mathrm{~W} / \mathrm{kg}\left(>1^{\circ} \mathrm{C}\right)$	>3.2 W/kg	>10 W/kg	>20 W/kg
Localized heating limit	$39^{\circ} \mathrm{C}$ in 10 g	$38^{\circ} \mathrm{C}$ in 10 g		$40^{\circ} \mathrm{C}$ in 10 g
FDA	$4 \mathrm{~W} / \mathrm{kg}$ for 15 min	$\begin{aligned} & 3 \mathrm{~W} / \mathrm{kg} \text { for } \\ & 10 \mathrm{~min} \end{aligned}$	$8 \mathrm{~W} / \mathrm{kg}$ in 1 g for 10 min	$\begin{aligned} & 12 \mathrm{~W} / \mathrm{kg} \text { in } 1 \mathrm{~g} \\ & \text { for } 5 \mathrm{~min} \end{aligned}$

Basic RF Pulse - Linear Polarized

$\vec{B}_{1}(t)=2 B_{1}^{e}(t) \cos \left(\omega_{R F} t+\theta\right) \vec{i}$
$B_{1}^{e}(t) \quad$ pulse envelope function
$\omega R F$ excitation carrier frequency
initial phase angle
\vec{i}

linearly polarized

Rect Envelope Function

$$
B_{1}^{e}(t)=B_{1} \sqcap\left(\frac{t-\tau_{p} / 2}{\tau_{p}}\right)= \begin{cases}B_{1}, & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}
$$

Sinc Envelope Function

$$
B_{1}^{e}(t)= \begin{cases}B_{1} \operatorname{sinc}\left[\pi f_{\omega}\left(t-\tau_{p} / 2\right)\right], & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}
$$

SINC functions are used to excite a narrow band of frequencies.

Circular vs. Linear Polarization

- Linear Polarization
- Simple, cheap
- Higher RF power
- Circular Polarization
- Generated with a quadrature RF transmitter coil
- More complex \& more expensive
- Reduced RF power deposition

Linearly Polarized Fields

Linear Polarization

$2 B_{1}^{e}(t) \cos \left(\omega_{R F} t\right) \hat{i}$

Circularly Polarized Fields

Circularly Polarized Fields

Linear Polarization
$2 B_{1}^{\epsilon}(t) \cos \left(\omega_{R F} t\right) \hat{i}$

CW Circular Polarization
$B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t\right) \hat{i}-\sin \left(\omega_{R F} t\right) \hat{j}\right]$

On-Resonance
Excitation+Heating
Modern MRI Systems
Only Use CW Circular
Polarization

CCW Circular Polarization

```
                                    \mp@subsup{B}{1}{e}(t)[\operatorname{cos}(\mp@subsup{\omega}{RF}{}t)\hat{i}+\operatorname{sin}(\mp@subsup{\omega}{RF}{}t)\hat{j}]
```


Very Off-Resonance Heating

Modern MRI Systems Don't Apply The CCW Field

Forced Precession in the Laboratory Frame without Relaxation

Four Special Cases...

- Free Precession in the Laboratory Frame
- Forced Precession in the Laboratory Frame
- Coordinate system anchored to scanner
- Free Precession in the Rotating Frame
- Forced Precession in the Rotating Frame
- Coordinate system anchored to spin system
...all without relaxation.
- a) Relaxation time constants are "really" long
- b) Time scale of event is \ll relaxation time constant

Forced Precession - Lab Frame

Forced Precession in the Laboratory Frame without Relaxation

$$
\left.\begin{array}{rl}
\frac{d \vec{M}}{d t} & =\vec{M} \times \gamma\left(\overrightarrow{B_{0}}+\overrightarrow{B_{1}}\right) \\
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
M_{x} & M_{y} & M_{z} \\
\gamma B_{1, x}^{e}(t) & \gamma B_{1, y}^{e}(t) & \gamma B_{0}
\end{array}\right| \\
|\mid \\
\frac{d M M_{x}}{d t}=\gamma B_{0} M_{y}-\gamma B_{1, y}^{e}(t) M_{z} \\
\frac{d M_{y}}{d t} & =-\gamma B_{0} M_{x}+\gamma B_{1, x}^{e}(t) M_{z} \\
\frac{d M_{z}}{d t} & =\gamma B_{1, y}^{e}(t) M_{x}-\gamma B_{1, x}^{e}(t) M_{y}
\end{array}\right\}
$$

Forced Precession in the Laboratory Frame without Relaxation

$$
\left.\begin{array}{c}
\frac{d M_{x}}{d t}=\gamma B_{0} M_{y}-\gamma B_{1, y}^{e}(t) M_{z} \\
\frac{d M_{y}}{d t}=-\gamma B_{0} M_{x}+\gamma B_{1, x}^{e}(t) M_{z} \\
\frac{d M_{z}}{d t}=\gamma B_{1, y}^{e}(t) M_{x}-\gamma B_{1, x}^{e}(t) M_{y}
\end{array}\right\} \text { Cou }
$$

Forced Precession in the Laboratory Frame without Relaxation

$$
\left.\begin{array}{c}
\frac{d M_{x}}{d t}=\gamma B_{0} M_{y}-\gamma B_{1, y}^{e}(t) M_{z} \\
\frac{d M_{y}}{d t}=-\gamma B_{0} M_{x}+\gamma B_{1, x}^{e}(t) M_{z} \\
\frac{d M_{z}}{d t}=\gamma B_{1, y}^{e}(t) M_{x}-\gamma B_{1, x}^{e}(t) M_{y}
\end{array}\right\},
$$

$$
\frac{d M_{z}}{d t}=-\gamma B_{1}^{e}(t) \sin \left(\omega_{R F} t+\theta\right) M_{x}-\gamma B_{1}^{e}(t) \cos \left(\omega_{R F} t+\theta\right) M_{y}
$$

Rotating Coordinate Frame

Laboratory Coordinates

Lab vs. Rotating Frame

- The rotating frame simplifies the mathematics and permits more intuitive understanding.

Laboratory Frame

Spins Precess

Rotating Frame

Observer Precesses

Note: Both coordinate frames share the same z-axis.

Rotating Frame Coordinates

- Simplifies the mathematics of MRI
- If the rotational frequency of the rotating frame ($x^{\prime}-y^{\prime}$) is matched to the bulk magnetization's precessional frequency, then rotational motion of the bulk magnetization is "removed" or demodulated.
- The rotating frame's transverse ($x^{\prime} y^{\prime}$) plane rotates clockwise (left-handed) at frequency ω.

Relationship Between Lab and Rotating Frames

$$
\begin{array}{ccccc}
& \text { Rotating Frame } & & & \text { Laboratory Frame } \\
\hat{i}^{\prime} & \equiv \cos (\omega t) \hat{i}-\sin (\omega t) \hat{j} & \hat{i} & \equiv & \cos (\omega t) \hat{i}^{\prime}+\sin (\omega t) \hat{j}^{\prime} \\
\hat{j}^{\prime} & \equiv \sin (\omega t) \hat{i}+\cos (\omega t) \hat{j} & \hat{j} & \equiv & -\sin (\omega t) \hat{i^{\prime}}+\cos (\omega t) \hat{j}^{\prime} \\
\hat{k}^{\prime} \equiv & \hat{k} & \hat{k} & \equiv & \hat{k}^{\prime}
\end{array}
$$

Note: Both coordinate frames share the same z-axis.

$$
\vec{M}_{r o t} \equiv\left[\begin{array}{c}
M_{x^{\prime}} \\
M_{y^{\prime}} \\
M_{z^{\prime}}
\end{array}\right] \quad \vec{B}_{r o t} \equiv\left[\begin{array}{c}
B_{x^{\prime}} \\
B_{y^{\prime}} \\
B_{z^{\prime}}
\end{array}\right] \quad \begin{gathered}
B_{z^{\prime}} \equiv B_{z} \\
M_{z^{\prime}} \equiv M_{z}
\end{gathered}
$$

Bulk magnetization components in the rotating frame.

Applied B-field components in the rotating frame.

Note: B-field and bulk magnetization z-components are equivalent in the two frames.

Equation of Motion

Equation of motion for an ensemble of spins (isochromats).
[Laboratory Frame]

$$
\frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma \vec{B}_{e f f}
$$

Four Special Cases...

- Free Precession in the Laboratory Frame
- Forced Precession in the Laboratory Frame
- Coordinate system anchored to scanner
- Free Precession in the Rotating Frame
- Forced Precession in the Rotating Frame
- Coordinate system anchored to spin system
...all without relaxation.
- a) Relaxation time constants are "really" long
- b) Time scale of event is \ll relaxation time constant

To The Board...

Mathematics of Hard RF Pulses

Parameters \& Rules for RF Pulses

- RF pulses have a "flip angle" (a)
- RF fields induce left-hand rotations
- All B-fields do this for positive γ
- RF pulses have a "phase" ($\boldsymbol{\theta}$)
- Phase of 0° is about the x-axis
- Phase of 90° is about the y-axis

Rules for RF Pulses

$\square Q \rightarrow$ Plip Angle

Flip Angle

- "Amount of rotation of the bulk magnetization vector produced by an RF pulse, with respect to the direction of the static magnetic field."
- Liang \& Lauterbur, p. 374

$$
\omega_{1}=\gamma B_{1} \text { anemmenemmant }
$$

How to determine a ?

Rules: 1) Specify α [radians]
2) Use $B_{1, \text { max }}$ if we can
3) Shortest duration pulse

How to determine α ?

$$
\alpha=\gamma \int_{0}^{\tau_{p}} B_{1}^{e}(t) d t
$$

$$
\tau=\frac{\alpha}{\gamma B_{1, \max }}=\frac{\pi / 2}{2 \pi \cdot 42.57 H z / \mu T \cdot 60 \mu T}=0.098 \mathrm{~ms}
$$

Bulk Magnetization in the Lab Frame

How do we mathematically account for α and θ ?
Use a composite of three operators.

Change of Basis

$$
\mathrm{R}_{z}^{\phi}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\vec{v}^{\prime}=\mathrm{R} \vec{v}
$$

Change of Basis by $-\theta$

Rotation by Alpha about X'-axis

$$
\mathbf{R}_{x^{\prime}}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right]
$$

Rotate \boldsymbol{M} by a about x'-axis.

Reverse the Change of Basis by θ

RF Pulse Operator

$$
\begin{aligned}
\mathbf{R}_{\theta}^{\alpha} & =\mathbf{R}_{z}(\theta) \mathbf{R}_{x^{\prime}}(\alpha) \mathbf{R}_{z}(-\theta) \\
& =\left[\begin{array}{ccc}
\mathrm{c}^{2} \theta+\mathrm{s}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & -\mathrm{s} \theta \mathrm{~s} \alpha \\
\mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & \mathrm{~s}^{2} \theta+\mathrm{c}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \alpha \\
\mathrm{~s} \theta \mathrm{~s} \alpha & -\mathrm{c} \theta \mathrm{~s} \alpha & \mathrm{c} \alpha
\end{array}\right]
\end{aligned}
$$

Homework \#1 \& Matlab

M219, Winter 2018

Homework Assignment \#1 (15 Points)

Due via E-mail on Tuesday, January 23rd by 9pm
To submit the assignment, e-mail DEnnis@mednet.ucla.edu a PDF entitled M219_HW01_[First Initial]_[Last Name].pdf (e.g. M219_HW01_D_Ennis.pdf). Please only submit neat and clear solutions. Late assignments will be discounted by $e^{-t / \tau}$, where $\tau=72$ hours.

For all problems - Clearly state the value of all constants and free variables that you use, show your work, provide units, and label your axes. This is not a group assignment. Please work individually.

If your assignments are hard to read, poorly commented, or sloppy, then points may be deducted. As appropriate, each solution should be obtained using Matlab. Please comment and submit your code as individual files that run for each problem.

Problem \#1 (5 points, plus 1 Extra Credit point) - Design the Main (B_{0}) Field. For this problem you will design the main $\left(B_{0}\right)$ magnet that meets the following specifications: 1) 1.5 T field strength (at isocenter) ; 2) 70 cm bore; 3) Length $<2 m ; 4$) Field variation $<100,000 \mathrm{ppm}$ for 50 cm along the z -axis.
A. Modify the PAM_Lec01_Bz_Uniformity.m function to design the length and current needed to meet these design specifications. This Matlab function use the following expression:

$$
\begin{equation*}
B_{z}(z)=\frac{\mu_{0} N I}{2 L}\left(\cos \alpha_{2}-\cos \alpha_{1}\right) \tag{1}
\end{equation*}
$$

Note, that according to this expression there is an axial (z), but no radial (x or y) dependence on the magnetic field strength and the field remains z-oriented. Make a plot of $B_{z}(z)$ for the length and current you have designed. [2 points]
B. What is the magnetic field variation (maximum, minimum, mean) for 50 cm ? Calculate and report the field homogeneity $\left[\left(B_{0, \max }-B_{0, \min }\right) / B_{0, \text { mean }}\right]$ in PPM for 50 cm . What is the vRMS error for 50 cm relative to the target field strength of 1.5 T ? [2 points]
C. How would you improve the design of your magnet to improve the field homogeneity to $<1,000$ ppm? [1 point]
D. Extra Credit: Use the principle of superposition and Eqn. 1 to improve the field homogeneity to $<1,000 \mathrm{ppm}$. [2 points]

B-fields

$$
B_{z}(z)=\frac{\mu I N}{2 L}\left(\cos \alpha_{2}-\cos \alpha_{1}\right) \quad \text { Haacke p. } 834
$$

```
Filename: PAM_Lec01_Bz_Uniformity.m
DBE@UCLA 2014.12.12
\% D Define some constants
mu \(=4 * \mathrm{pi} * 10 \mathrm{e}-7\); \% Air [T.m.A-1]
\(\mathrm{I}=508.25\); Current [amps]
L=2:2:10; % Length [meters]
N=2350; % Number of windings [#]
r=1; % Radius [m]
```

Demonstrate the axial uniformity of the B-field for a solenoid.
\%\% Calculate Bz(z)
figure; hold on;
for ind=1: numel(L)
$z=1$ inspace $(0, L$ (ind) , 100);
alpha1=atan2 (r,z);
alpha2=pi-atan2 (r,L(ind) $-z)$;
$B z=(m u * I * N / 2) *(\cos (a l p h a 1)-\cos (a l p h a 2))$
p(ind) $=$ plot $(z-L$ (ind)/2,Bz); end

- L:r=2 to 10 m
- $\mu=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}^{-1}$

Problem \#2 (5 points, plus 1 Extra Credit point) - B_{0} vs. B_{1} fields. Assume a hard RF pulse with a flip angle of $\alpha=\pi / 2$, phase of $\pi / 4$, and $B_{1, \max }=20$ gauss for ${ }^{31} P$ at $B_{0}=0.15 T$.
A. What is the duration $\left(\tau_{R F}\right)$ of the RF pulse? [$1 / 2$ point]
B. Find ω_{0}, the frequency of precession in MHz for the B_{0} field. [$1 / 2$ point]
C. Find ω_{1}, the frequency of nutation in MHz for the B_{1} field. [$1 / 2$ point]
D. How many cycles of precession does the bulk magnetization go through during the RF pulse? How does this compare to the number of cycles of nutation? [$1 / 2$ point]
E. Use PAM_B1 _op.m to generate the M_{x}, M_{y}, and M_{z} components for this RF pulse from 0 to $\tau_{R F}$ in the rotating frame using MATLAB. This can be done with a for-loop. Use 1,000 points for your simulation. Plot the results; label the axes. [1 point]
F. Now incorporate the use of PAM_B0_op.m to generate the M_{x}, M_{y}, and M_{z} components in the laboratory frame using MATLAB. Plot the results; label the axes. Hint: The RF phase is constant in the rotating frame, but not the laboratory frame. [2 points]
G. Extra Credit: Explain how B_{1} field can be effective at perturbing the spin system when B_{0} is so much larger in magnitude. [1 point]
Problem \#3 (5 points) - T_{1} and T_{2} relaxation
A. In lecture we learned that T_{1} and T_{2} relaxation are tissue dependent characteristics. Using the equations for relaxation during free precession in the rotating frame, find a general expressions for T_{1} contrast after an inversion pulse. [$1 / 2$ point $]$
B. Derive an analytic expression for the time that maximizes the image contrast (signal difference) between white matter $(790 \mathrm{~ms})$ and gray matter $(925 \mathrm{~ms})$. Assume that the proton densities are the same. [1 point]
C. Plot the T_{1} relaxation results for white matter (790 ms) and gray matter (925 ms). Prove that your solution in (A) produces the same result as simply taking the difference between the two curves. Label the axes. [1 point]
D. Using the equations for relaxation during free precession in the rotating frame, find a general expressions for T_{2} contrast after an saturation pulse. [$1 / 2$ point]
E. Repeat the process and derive an analytic expression for T_{2} contrast after a saturation pulse. Assume that the proton densities are the same. [1 point]
F. Plot the T_{2} relaxation results for white matter $(92 \mathrm{~ms})$ and gray matter $(100 \mathrm{~ms})$. Prove that your solution in (C) produces the same result as simply taking the difference between the two curves. Label the axes. [1 point]
Problem \#4 (1 Extra Credit point) Create your own three-part question using the concepts from the first four lectures. Provide an answer. Your question may be chosen to appear on the final exam (and you'll already know the answer!).

B_{1} Operator - Nutation

$$
\mathbf{R F}_{\theta, H}^{\alpha}=\left[\begin{array}{cccc}
\mathrm{c}^{2} \theta+\mathrm{s}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & -\mathrm{s} \theta \mathrm{~s} \alpha & 0 \\
\mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & \mathrm{~s}^{2} \theta+\mathrm{c}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \alpha & 0 \\
\mathrm{~s} \theta \mathrm{~s} \alpha & -\mathrm{c} \theta \mathrm{~s} \alpha & \mathrm{c} \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\overrightarrow{\mathrm{M}}_{H}^{+}=\mathrm{RF}_{\theta, H}^{\alpha} \overrightarrow{\mathrm{M}}_{H}^{-}
$$

$$
\left[\begin{array}{c}
M_{x}^{+} \\
M_{y}^{+} \\
M_{z}^{+} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\mathrm{c}^{2} \theta+\mathrm{s}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & -\mathrm{s} \theta \mathrm{~s} \alpha & 0 \\
\mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & \mathrm{~s}^{2} \theta+\mathrm{c}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \alpha & 0 \\
\mathrm{~s} \theta \mathrm{~s} \alpha & -\mathrm{c} \theta \mathrm{~s} \alpha & \mathrm{c} \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
M_{x}^{-} \\
M_{y}^{-} \\
M_{z}^{-} \\
1
\end{array}\right]
$$

B1 Operator - Nutation

```
This function returns the 4x4 homogenous coordinate expression for an RF
% pulse with a particular gyromagnetic ratio (gamma), B1 amplitude, time
% step (dt), and phase (theta). THETA=0 is phased about the X-axis and
% THETA=90 is phased about the Y-axis.
% SYNTAX: dB1=PAM_B1_op(gamma,B1,dt,theta)
INPUTS: gamma - gyromagnetic ratio [Hz/T]
    B1 - B1 amplitude [T]
    dt - time step [s]
    theta - phase angle [radians]
OUTPUT: RF - RF pulse operator [4x4]
DBE@UCLA 2015.01.21
function dB1=PAM_B1_op(gamma,B1,dt,theta)
% Define the incremental flip angle in time dt
alpha=2*pi*gamma*B1*dt;
% Change of basis
R_theta=[cos(-theta) -sin(-theta) 0 0;
    sin(-theta) cos(-theta) 0 0;
    0 0 1 0;
    0 0 0 1];
% Flip angle rotation
R_alpha=[llll
    0 cos(alpha) sin(alpha) 0;
    0 -sin(alpha) cos(alpha) 0;
    0 0 0 1];
% Homogeneous expression for RF MATRIX
dB1=R_theta.'*R_alpha*R_theta;
```


Bo Operator - Precession

$$
B_{0, H}=\left[\begin{array}{cccc}
\cos \gamma B_{0} t & \sin \gamma B_{0} t & 0 & 0 \\
-\sin \gamma B_{0} t & \cos \gamma B_{0} t & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{c}M_{x}\left(0_{+}\right) \\ M_{y}\left(0_{+}\right) \\ M_{z}\left(0_{+}\right) \\ 1\end{array}\right]=\left[\begin{array}{cccc}\cos \gamma B_{0} t & \sin \gamma B_{0} t & 0 & 0 \\ -\sin \gamma B_{0} t & \cos \gamma B_{0} t & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}M_{x}\left(0_{-}\right) \\ M_{y}\left(0_{-}\right) \\ M_{z}\left(0_{-}\right) \\ 1\end{array}\right]$

Homogeneous coordinate expression for precession.

Bo Operator - Precession

```
This function returns the 4x4 homogenous coordinate expression for
% precession for a particular gyromagnetic ratio (gamma), external
field (B0), and time step (dt).
SYNTAX: dB0=PAM_B0_op(gamma,B0,dt)
INPUTS: gamma - Gyromagnetic ratio [Hz/T]
    B0 - Main magnetic field [T]
    dt - Time step or vector [s]
OUTPUTS: dB0 - Precessional operator [4x4]
% DBE@UCLA 01.21.2015
function dB0=PAM_B0_op(gamma,B0,dt)
if nargin==0
    gamma=42.57e6; % Gyromagnetic ratio for 1H
    B0=1.5; % Typical B0 field strength
    dt=ones(1,100)*1e-6; % 100 1\mus time steps
end
dB0=zeros(4,4,numel(dt)); % Initialize the array
for n=1:numel(dt)
    dw=2*pi*gamma*B0*dt(n); % Incremental precession (rotation angle)
    % Precessional Operator (left handed)
    dB0(:,:,n)=[ cos(dw) sin(dw) 0 0;
            -sin(dw) cos(dw) 0 0;
                0 0 1 0;
        0 0 0 1];
end
return
```


Matlab Example - Free Precession

\%\% Filename: PAM_Lec02_B0_Free_Precession.m
\%
\% Demonstrate the precession of the bulk magnetization vector.
\%
\% DBE@UCLA 2015.01.06
\%\% Define some constants
gamma=42.57e6; \% Gyromagnetic ratio for $1 \mathrm{H}[\mathrm{MHz/T}]$
$\mathrm{B} 0=1.5 ; \quad$ \% B0 magnetic field strength [T]
$d t=0.01 \mathrm{e}-8 ; \quad$ \% Time step [s]
nt=500; \% Number of time points to simulate
$t=(0: n t-1) * 0.01 e-8 ; \quad$ \% Time vector [s]
M0=[sqrt(2)/2 0 sqrt(2)/2 1]'; \% Initial condition (I.C.)

M=zeros(4,nt); \% Initialize the magnetization array
$M(:, 1)=\mathrm{M0;} \quad$ \% Define the first time point as the I.C.
\%\% Simulate precession of the bulk magnetization vector $d B 0=P A M _B 0 _o p(g a m m a, B 0, d t) ; \%$ Calculate the homogenous coordinate transform

```
for n=2:nt
    M(: , n)=dB0*M(:,n-1);
end
```


\%\% Plot the results
figure; hold on;

$$
\begin{array}{ll}
p(1)=p l o t(t, M(1,:)) ; & \text { \% Plot the } M x \text { component } \\
p(2)=p l o t(t, M(2,:)) ; & \text { \% Plot the } M y \text { component } \\
p(3)=p l o t(t, M(3,:)) ; & \text { \% Plot the } M z \text { component }
\end{array}
$$

set(p,'LineWidth',3); \% Increase plot thickness
ylabel('Magnetization [AU]');
xlabel('Time [s]');
legend('M_x','M_y','M_z');
title('Bulk Magnetization Components as f(t)');

Problem \#2 (5 points, plus 1 Extra Credit point) - B_{0} vs. B_{1} fields. Assume a hard RF pulse with a flip angle of $\alpha=\pi / 2$, phase of $\pi / 4$, and $B_{1, \max }=20$ gauss for ${ }^{31} P$ at $B_{0}=0.15 T$.
A. What is the duration $\left(\tau_{R F}\right)$ of the RF pulse? [$1 / 2$ point]
B. Find ω_{0}, the frequency of precession in MHz for the B_{0} field. [$1 / 2$ point $]$
C. Find ω_{1}, the frequency of nutation in MHz for the B_{1} field. [$1 / 2$ point]
D. How many cycles of precession does the bulk magnetization go through during the RF pulse? How does this compare to the number of cycles of nutation? [$1 / 2$ point]
E. Use PAM_B1_op.m to generate the M_{x}, M_{y}, and M_{z} components for this RF pulse from 0 to $\tau_{R F}$ in the rotating frame using MATLAB. This can be done with a for-loop. Use 1,000 points for your simulation. Plot the results; label the axes. [1 point]
F. Now incorporate the use of PAM_B0_op.m to generate the M_{x}, M_{y}, and M_{z} components in the laboratory frame using MATLAB. Plot the results; label the axes. Hint: The RF phase is constant in the rotating frame, but not the laboratory frame. [2 points]
G. Extra Credit: Explain how B_{1} field can be effective at perturbing the spin system when B_{0} is so much larger in magnitude. [1 point]

Problem \#3 (5 points) - T_{1} and T_{2} relaxation

A. In lecture we learned that T_{1} and T_{2} relaxation are tissue dependent characteristics. Using the equations for relaxation during free precession in the rotating frame, find a general expressions for T_{1} contrast after an inversion pulse. [$1 / 2$ point]
B. Derive an analytic expression for the time that maximizes the image contrast (signal difference) between white matter $(790 \mathrm{~ms})$ and gray matter $(925 \mathrm{~ms})$. Assume that the proton densities are the same. [1 point]
C. Plot the T_{1} relaxation results for white matter $(790 \mathrm{~ms})$ and gray matter $(925 \mathrm{~ms})$. Prove that your solution in (A) produces the same result as simply taking the difference between the two curves. Label the axes. [1 point]
D. Using the equations for relaxation during free precession in the rotating frame, find a general expressions for T_{2} contrast after an saturation pulse. [$1 / 2$ point]
E. Repeat the process and derive an analytic expression for T_{2} contrast after a saturation pulse. Assume that the proton densities are the same. [1 point]
F. Plot the T_{2} relaxation results for white matter (92 ms) and gray matter (100 ms). Prove that your solution in (C) produces the same result as simply taking the difference between the two curves. Label the axes. [1 point]
Problem \#4 (1 Extra Credit point) Create your own three-part question using the concepts from the first four lectures. Provide an answer. Your question may be chosen to appear on the final exam (and you'll already know the answer!).

Types of RF Pulses

Types of RF Pulses

- Excitation Pulses
- Inversion Pulses
- Refocusing Pulses
- Saturation Pulses
- Spectrally Selective Pulses
- Spectral-spatial Pulses
- Adiabatic Pulses

Excitation Pulses

- Tip $\mathrm{M}_{\mathbf{z}}$ into the transverse plane
- Typically 200ps to 5ms
- Non-uniform across slice thickness
- Imperfect slice profile
- Non-uniform within slice
- Termed B1 inhomogeneity
- Non-uniform signal intensity across FOV

Small Flip Angle Pulse

Inversion Pulses

- Typically, 180° RF Pulse
- non -180° that still results in $-\mathrm{Mz}_{z}$
- Invert Mz_{z} to $-\mathrm{Mz}_{\mathbf{z}}$
- Ideally produces no MXY
- Hard Pulse
- Constant RF amplitude
- Typically non-selective
- Soft (Amplitude Modulated) Pulse
- Frequency/spatially/spectrally selective
- Typically followed by a crusher gradient

Refocusing Pulses

- Typically, 180° RF Pulse
- Provides optimally refocused MXY
- Largest spin echo signal
- Refocus spin dephasing due to
- imaging gradients
- local magnetic field inhomogeneity
- magnetic susceptibility variation
- chemical shift
- Typically followed by a crusher gradient

Thanks

DANIEL B. ENNIS, PH.D. ENNIS@UCLA.EDU
310.206.0713 (OFFICE)

HTTP://ENNIS.BOL.UCLA.EDU

Peter V. Ueberroth BLDG.
SUITE 1417 , ROOM C 10945 LE CONTE AVENUE

