M219, Winter 2018 Homework Assignment #3 Due Thursday, February 22nd by 10pm

To submit the assignment, e-mail DEnnis@mednet.ucla.edu a PDF entitled M219_HW03_[First Initial]_[Last Name].pdf (e.g. M219_HW03_D_Ennis.pdf). Please only submit neat and clear solutions. Late assignments will be discounted by $e^{-t/\tau}$, where $\tau = 72$ hours.

For all problems – Clearly state the value of all constants and free variables that you use, show your work, provide units, and label your axes. This is not a group assignment. Please work individually. As appropriate, each solution should be obtained using Matlab. Please comment and submit your code using the publish.m function for each problem.

1 Gradient Echo vs. Spin Echo Contrast (3 points)

The equations that describe the echo amplitude for a gradient echo and spin echo sequence are as follows:

$$A_{GRE} = \frac{\rho \left(1 - e^{-\frac{TR}{T_1}}\right)}{1 - \cos \alpha e^{-\frac{TR}{T_1}}} \sin \alpha e^{-TE/T_2^*} \tag{1}$$

$$A_{SE} = \rho \left(1 - e^{-\frac{\mathrm{TR}}{\mathrm{T}_1}} \right) e^{-TE/T_2} \tag{2}$$

- A. Using the above equations in MATLAB to determine the TE and TR needed to generate the maximum T_1 contrast between Tissue A ($\rho = 1.0, T_1=2000$ ms, $T_2=40$ ms, $T_2^*=25$ ms) and Tissue B ($\rho = 1.0, T_1=500$ ms, $T_2=40$ ms, $T_2^*=25$ ms) for both a gradient echo sequence and a spin echo sequence. Assume the pulse sequences are both limited by: $5\text{ms}\leq\text{TE}\leq100$ ms, $10\text{ms}\leq\text{TR}\leq10,000$ ms. Assume $\alpha=30^\circ$ for GRE and $\alpha=90^\circ$ for SE. This can be done by simulating the signal amplitude for a range of TE and TR.
- B. Is it preferable to use a gradient echo or a spin echo sequence for T_1 contrast? Why?

2 Slice Selection (3 points)

- A. If a gradient of $G_z = 8G/cm$ is applied and we want to excite a slice that is 3mm thick at isocenter what should be the center frequency (ω) and bandwidth ($\Delta \omega$) of the RF pulse for ¹H on a 3.0T scanner?
- B. Define ω and $\Delta \omega$ for a slice that is +30mm from isocenter in the z-direction and 3mm thick.
- C. Redesign the RF pulse from Part A to excite 31P ($\gamma = 17.235MHz/T$) at isocenter. What is the new center frequency (ω)? With the same bandwidth ($\Delta \omega$) and G_z (8G/cm), what is the new slice thickness?

3 k-space and Image Space (4 points)

A. Import the provided image (heart.mat) into Matlab and render an image of the k-space magnitude (fft2.m).

Hint: Use fftshift.m to ensure the dominant signals (low spatial frequencies) occur at the k-space center.

- B. Add a noisy spike artifact to a Fourier coefficient in the upper left quadrant of k-space and show the result in image space (ifft2.m). Describe the result and why this occurs.
- C. Remove (i.e set to zero) all but the middle ten lines from the original k-space data (from the original FFT, without the noisy spike). Show the resulting k-space magnitude and the resultant image. Describe what you see.
- D. Rotate the image by -45° (J = imrotate(I,-45,'bilinear','crop');). Show the resulting k-space magnitude and the resultant image. Describe what you see.
- E. Remove (set to zero) every fourth line of the k-space data from the original FFT (without the noisy spike). Show the resulting k-space magnitude and the resultant image. Describe what you see.

4 k-space Sampling (5 points)

The bandwidth (Δf) of a rectangular readout gradient with amplitude G for an arbitrary field of view (FOV) is given by:

$$\Delta f = \gamma \cdot G \cdot FOV \tag{3}$$

If the signal is read out discretely with this gradient across N-points devoting a dwell-time δt to each point in k-space, the k-space increment is given by:

$$\Delta k = \gamma \cdot G \cdot \Delta t \tag{4}$$

- A. What is the spatial resolution Δx of this readout given these general expressions?
- B. Combine the result of 4A with the given expressions to rewrite a simplified expression for Δf .
- C. Let N = 128, $\Delta x = 2$ mm. On a 3.0T scanner, calculate Δf and Δt for G = 20mT/m and G = 40mT/m. Does increasing G increase or decrease Δt ?
- D. How many cycles of precession are captured for each of the readout gradients from 4C within a single dwell time Δt for water at 3.0T?