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Lecture #13 - Learning Objectives

• Understand how to combine data from several receiver 
channels. 

• Appreciate how the final image is obtained from the sum over 
all sampled spatial frequency (Fourier) patterns. 

• Define how the field-of-view and the number of acquired data 
points impacts spatial resolution. 

• Describe the parameters that control the field of view. 
• Understand the applications of zero padding and windowed 

reconstructions. 
• Identify sources of Gibb’s ringing and ways to mitigate it.
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Lecture #13 Summary
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FFT Î(x) = �k

N/2�1X

n=�N/2

S (n�k)wnei2⇡n�kx

Series 
Coefficient

Fourier 
Step-size

On…

Window 
Weight

Spatial 
Frequency 
Encoding

=
➠

FFT

•Dot 
Multiply

Fourier Reconstruction Formula (Eqn. 6.20)
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Multi-Channel Reconstruction
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8-Channel Head Coil

Each coil element (channel) has a unique sensitivity profile – 

Coil-1

Coil-2

Coil-3 Coil-4 Coil-5 Coil-6

Coil-7

Coil-8

~Br (~r)



UCLA 
Radiology

Multi-coil Magnitude & Phase
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Coils “color” the magnitude and phase of the received signal.



Coil 4

Coil 3

4-Channel Cardiac Coil
Each coil element has a unique sensitivity profile.

Coil 2

Coil 1



Coil 4Coil 3

4-Channel Cardiac Coil
Each coil element has a unique sensitivity profile.

Coil 2Coil 1
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4-Channel Cardiac Coil
Coils are combined to form a single image.
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k-space

Multiple Coil Reconstruction
MagnitudeRMS

FFT-1

jth-coil
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Noise variance 
- Depends on coil loading 
- Proximity to patient 
- Measured with “noise scan” 
- Weights each coil’s contribution

Image from jth coil

I(~r) ! Final magnitude image

�2
j !

Ij (~r) !



Image Reconstruction
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Image Reconstruction

I = T �1 {S}

S = T {I}

Spatial Information 
Encoding Scheme 
(Fourier Transform)

Measured 
Signal

Image 
Function

Data Consistency 
Constraint

Our task is to recover I from the measured signals.
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MR Signal Equation
The MRI Signal Equation is the…

�!(x, y) = �Gx · x+ �Gy · y Gradients define ∆w 
(spatial frequencies)

kx(t) =
�

2⇡
Gxt ky(t) =

�

2⇡
Gyt k-space is convenient…

s (kx(t), ky(t)) =

Z Z

x,y

~M0
xy (x, y) · e�i2⇡[kx(t)x+ky(t)y]dxdy

…2D Fourier Transform!s (t) =

Z Z
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Z Z
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xy (~r) · e�i�!(~r)td~r
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The acquired signal is the FT of the objects transverse magnetization.
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =

Z +⇥

�⇥
I (x) e�i2�n�kx·xdx{ {
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =

Z +⇥

�⇥
I (x) e�i2�n�kx·xdx{ {

➠We can show the following...(Page 191 in Lauterbur).

1X

n=�1
S[n]ei2⇡n�kx = 1

�k

1X

n=�1
I

�
x� n
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Fourier Series Periodic Extension of I(x)

Eqn. 6.9

Eqn. 6.10
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angle(F)
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Image Reconstruction

• Fourier series 
• ∆k is the fundamental frequency 
• S[n] coefficient of the nth harmonic

• Periodic extension of I(x) 
• n is an integer 
• Period is 1/∆k=FOV

1X

n=�1
S[n]ei2⇡n�kx = 1

�k

1X

n=�1
I

�
x� n

�k

�

FOV
Periodic extensions of a object/function.

I
�
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�

x
2•FOV 3•FOV
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Finite Sampling

D = {n�k,�N/2  n  +N/2}
S(k) k 2 Dis measured at

I(x) = �k

N/2�1X

n=�N/2

S[n]ei2⇡n�kx, |x| < 1
�k

Fourier 
Step-size

Number of 
Sample Points

This is the fundamental image reconstruction equation for MRI.

Eqn. 6.20



Spatial Resolution
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Spatial Resolution
• Spatial resolution of an imaging system is the smallest 

separation δx of two point sources necessary for them 
to remain resolvable in the resultant image.

Î (x) = I (x) ⇤ h (x)

ObjectImage
Point 

Spread 
Function
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Spatial Resolution

2w

w

½w

h(x)

w

I (x) Î (x)

⇤ =
Imaging
System

Î (x) = I (x) , if and only if h (x) = � (x)
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Spatial Resolution
• The resolution limit of an imaging system is the 

width (Wh) of its point spread function: 
– Wh is the full-width half-max of h(x) 

• Alternately, 
– Wh of h(x) is the width of an approximating box-function 

with the same height and area as h(x):

Wh = 1
hmax

Z +1

�1
h(x)dx
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x x

xx

N=16, ∆k=1 N=64,∆k=1

N=16, ∆k=2 N=64, ∆k=2

Dirichlet Function

h(x) ⇡ �k
sin(⇡N�kx)
sin(⇡�kx)

= Dir (N,�)

Fourier Reconstruction PSF

Increasing the number of points (N) 
-or- 

Decreasing the FOV (increasing ∆k) 

Decreases the FWHM

Eqn. 8.7

This is the approximate PSF for Fourier sampling.
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Fourier Reconstruction PSF

Wh = 1
hmax

Z 1
2�k

� 1
2�k

h(x)dx =
1

N�k

Note, we can’t reduce Wh and N simultaneously, therefore 
– An increase in spatial resolution (decrease in Wh) 

requires an increase in N or ∆k (decrease in FOV)  
– A decrease in spatial resolution (increase in Wh) requires 

a decrease in N or ∆k (increase in FOV) 

Wh =
1

N�k
=

FOV

N

Fourier Pixel Size 
(∆xF)

Limits over a 
single period
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Finite Sampling
Wh =

1
N�k

=
FOV

N

What is the same between the two acquisitions? Different?
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�kx =
1

FOVx
= �|Gx|�t

�ky =
1

FOVy
= ��GyTpe

FOVx

F
O

V
y

Field of View

FOV constraints during readout.

FOV constraints during phase encoding.

Eqn. 5.123

Eqn. 5.123
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�kx =
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Eqn. 5.124

Eqn. 5.123
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Imperfections & Artifacts 

Daniel B. Ennis, Ph.D. 
Magnetic Resonance Research Labs

http://www.ajronline.org/doi/pdf/10.2214/ajr.182.2.1820532
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Lecture #14 - Learning Objectives

• Describe the origin and correction for several artifacts. 
• Understand the impact of spatial resolution and scan time on 

signal-to-noise ratio. 
• Explain the importance of readout bandwidth and the +/- of 

high (or low) readout bandwidth. 
• Define the origin, artifact, and possible correction for 

chemical shift artifacts. 
• Appreciate why motion causes image artifacts in MRI 
• Be able to identify several artifacts in an MR image.



Gibb’s Ringing
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Gibb’s Ringing
• Spurious ringing around sharp edges 
• Max/Min overshoot is ~9% of the intensity 

discontinuity 
– Independent of the # of recon points 
– Frequency of ringing increases as # of recon points 

increases 
• Ringing becomes less apparent 

• Result of truncating the Fourier series model as 
a consequence of finite sampling 

• Can reduce by: 
– Acquiring more data 
– Filtering the data which reduces oscillations in the PSF
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Shepp-Logan
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Gibb’s Ringing
32          64         128         256

32 

64 

128 

256

What is the difference between these acquisitions?
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Gibb’s Ringing
32          64         128         256

32 

64 

128 

256

Why do the images look like this?
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Zero-Pad
32          64         128         256

32 

64 

128 

256



Windowed Reconstruction
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Windowed Reconstruction

Î(x) = �k

N/2�1X

n=�N/2

S (n�k)wnei2⇡n�kx

k-space 
filter/window 

function

Î(x) = �k

N/2�1X

n=�N/2

S (n�k) ei2⇡n�kx

Fourier reconstruction

Windowed Fourier 
reconstruction

Eqn. 6.21
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Hamming Filter - 1D
w(n) ,

⇢
0.54 + 0.46 cos(2⇡ n

N ) �N/2  n  N/2� 1
0 otherwise

-N/2          0          N/2-1
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Windowed Reconstruction

⇤

⇤

=

=

Hamming 
Weighted PSF

Fourier Recon PSFTrue Object

True Object

Fourier Recon

Hamming Windowed 
Fourier Recon

I (x) h (x) Î (x)
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Hamming Filter - 2D

W (n) , w(n)⌦ w(n)



UCLA 
Radiology

Hamming Filter

=

➠

FFT

➠

FFT

•Dot 
Multiply
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Zero-Pad
32          64         128         256

32 

64 

128 

256

With zero padding only, Gibbs ringing is evident.
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Hamming Window & Zero-Pad
32          64         128         256

32 

64 

128 

256

Windowing k-space mitigates Gibb’s ringing, but blurs a little.



Artifacts
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Artifacts
• Aliasing  
• Gibb’s Ringing 
• Noisy spike artifacts 
• Noise 
• Chemical shift 
• Motion Artifacts 
• Metal artifacts 
• Gradient Non-linearity 
• Data clipping 
• RF interference 
• And more…



Noise



UCLA 
Radiology

Signal-to-Noise Ratio

Time [frame #]

S
ig

na
l [

a.
u.

]
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Signal-to-Noise Ratio
• SNR – Signal-to-noise ratio 

– Signal – Mean signal intensity in ROI. Assumes: 
• 1) Tissue homogeneity 
• 2) Noise is only source of variance 

– Noise  – SD of background ROI outside object. Assumes: 
– 1) Noise is only source of variance 

This method of measuring the SNR is widespread, but imperfect.
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Signal-to-Noise Ratio

• SNR – Signal-to-noise ratio 
– Signal – Mean signal intensity in ROI 
– Noise  – Standard deviation of noise 

• CNR - Contrast-to-noise ratio 
– Signal Difference 

• Difference between mean signal intensity in two ROIs 
– Noise - Standard deviation of noise

SNR , signal amplitude
standard deviation of noise

CNR , signal di↵erence
standard deviation of noise
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What is the FT of noise? Noise.



To The Board...



UCLA 
Radiology

SNR & Imaging Parameters

• Gradient Echo vs. Spin Echo 
• TR, TE, TI 
• Flip Angle (Gradient Echos) 
• Field of View (FOV) 

– Square or Rectangular 
• Slice Thickness (h) 
• Matrix Size 

– Number of readout points (x) 
– Number of phase encodes  (y) 

• Bandwidth (Hz) 
– AKA Pixel Bandwidth (Hz/pixel)
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Signal-to-noise Ratio

SNR � V
⇥

t

Large Voxels (Low Resolution)⇔High SNR

Long Scan Time⇔High SNR

High Resolution + Fast Imaging Severely Compromises SNR
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Signal-to-noise Ratio

• V   – Voxel Volume 
– Slice-thickness (h) x X-res x Y-res 

• X-res = FOVx/Nkx 

• Y-res = FOVy/Nky 

• t   – Data acquisition time 
– (Nkx x Nky x Naverages)/bandwidth

SNR � FOVx

Nkx

FOVy

Nky

h

�
NkxNkyNavg

BW

SNR � V
⇥

t
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Signal-to-noise Ratio

• Example #1 
– Halving slice thickness requires 4x averages to maintain SNR 

• Example #2 
– Doubling slice thickness requires 25% time to maintain SNR 

• Example #3 
– FOV is, in general, fixed.   
– To increase resolution we increase Nkx or Nky.   
– This results in increased scan time, but   
– The SNR decreases. 

SNR � V
⇥

t

SNR � FOVx

Nkx

FOVy

Nky

h

�
NkxNkyNavg

BW
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Parallel Imaging and SNR

• g - geometry factor 
– Loss associated with coil noise-correlation 
– For R=1, g=1 
– For R=2, g=~1.1-1.5 

• R - reduction or acceleration factor 
– Loss associated with scan time reduction 
– Typically ~1/2 N-coils 

• SNR for P.I. is spatially dependent 
– Higher in areas of aliasing

SNRP.I. =
SNR

g
p
R

Parallel imaging has additional SNR penalties, but decreases scan time.



UCLA 
Radiology

Impact of Acceleration

Rate-1 Rate-2 Rate-3 Rate-4

5.6s8.7s 4.0s 3.3s

Low SNR 
Short Acq.

High SNR 
“Long” Acq.

High acceleration rates lead to local noise amplification.

P. Kellman (NIH)



Chemical Shift
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Chemical Shift Artifact

Water
Fat

Frequency

Position

�f

�x �x0

• Gradients provide linear variation in frequency 
• Fat has a 3.5ppm lower frequency than water 

– -222Hz @ 1.5T and -444Hz @ 3.0T 
• Scanner detects frequency, then maps to position 
• Scanner “assumes” everything is water, therefore fat (lower frequency) 

is interpreted as lower frequency (shifted position) water.

X-Gradient

X

Gradient’s effect is off-set by chemical shift

⇥x =
2⇤⇥f

�Gx
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x

xNormal Spins

Off-Resonant Spin

Chemical Shift Artifact
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Chemical Shift Artifact

BW = ± 16kHzBW = ± 4kHz BW = ± 8kHz
ReadoutLow Bandwidth 

Large Fat-Water Shift 
High SNR

High Bandwidth 
Small Fat-Water Shift 

Low SNR



UCLA 
Radiology

Solution

• High bandwidth pulse sequences 
– Degrades SNR (reduces acquisition time) 
– Reduces chemical shift artifact 

• Fat saturation pulses/techniques



Motion Artifacts
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Motion in MRI
• Motion is responsible for a corruption in spatial 

localization in PE direction, resulting in blurring 
and/or ghosting artifacts. 

• Typical types of motion in body 
– Patient motion 
– Respiration 
– Cardiac motion and vascular pulsation 
– Peristalsis & bowel gas. 

• Recording signal in k-space not image domain!

FT

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part I

Slow/Bulk Motion

Examples: 
- Respiration 
- Feet motion 
- Swallowing 

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part I

Recording Signal 
in k-space!

Slow/Bulk Motion
MR Image with 
Motion Artifacts

Fourier 
Transform

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part I

Frequency-space 
(k-space)

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part I

Frequency-space 
(k-space)

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part I

Frequency-space 
(k-space)

MR Image with 
Motion Artifacts

Slide Courtesy of Kyung Sung
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Breathing (Motion) Artifacts

Breath heldFree Breathing Free Breathing

Motion artifacts appear in the phase encode direction.
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Remedies (and Penalties)
• Possible solutions? 

– Breath-holding 
– Respiratory gating 
– Reduces body movements 

• Patient coaching, physical restraint, sedation 

• Disadvantages  
– Requires fast sequences 
– Increases the scan time; restricts the available TRs 
– Patients acceptance and discomfort
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Motion Artifacts - Part II

Examples: 
- Aortic Pulsation 
- Arterial Pulsation

Periodic Motion

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part II

Recording Signal 
in k-space!

Periodic Motion

Fourier 
Transform

MR Image with 
Motion Artifacts

Slide Courtesy of Kyung Sung



UCLA 
Radiology

Motion Artifacts - Part II

Periodic Motion

Static Part

Moving Part

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part II
Static Part

Moving Part

Fourier 
Transform

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part II

Moving Part

MR Image with 
Ghosting Artifacts

Slide Courtesy of Kyung Sung
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Motion Artifacts - Part II

Moving Part

MR Image with 
Ghosting Artifacts

Slide Courtesy of Kyung Sung
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Remedies (and Penalties)
• Possible solutions? 

– Cardiac gating ± segmented imaging. 
– Signal suppression of moving tissues. 
– Swapping phase-encoding and frequency 

encoding directions 

• Disadvantages 
– Increases scan time. 
– Increases TR (due to preparation pulses). 
– Only shifts the artifacts.



Data Clipping
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Data Clipping

• Received signal saturates the receiver. 
• Peak signal usually in the middle of k-space, 

therefore lose low spatial frequency information: 
– Contrast 
– Intensity 

• Pre-scan procedure usually avoids data clipping 
by adjusting receiver gains.
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Data Clipping



Radio Frequency Interference
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RF Shielding
• RF fields are close to FM radio 

– 1H @ 1.5T ⇒ 63.85 MHz 

– 1H @ 3.0T ⇒ 127.71 MHz 

– KROQ ⇒ 106.7 MHz 

• Need to shield local sources from interfering 
• Copper room shielding required

Penetration Panel
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Penetration Panel
DB-25 DB-25 DB-9

DB-25 DB-25 DB-9

DB-15 DB-9

DB-9

DB-15

BNC BNC BNC

BNCBNCBNC

0.5”
0.75”

0.5”

1”

1”

1”

1”

1.5” 1.5”

4” waveguide

8-32 m
achine screw

s

8” X 12” penetration (panel size is 9” X 13”)

Panel 2 - between equipment
room and scan room

Panel 1 - between scan
room and console room

Location of Panel 2 is to be in the proximity
of the Siemens penetration panel. 

1-0

4-0

2-0

2-63-0

3-6

Approximate location
8”X12” Panel 1

DB cutout dimensions

BNC Hole Dimensions

Penetration panels should
be made from 16 ga. steel or aluminum

D
B-

25 D
B-

9

D
B-

25 D
B-

9

BNC BNC BNC

BNCBNCBNC

1”

1.5”

1.5”

4” waveguide

1”1”1”1” 1.5” 1”

8” Penetration (panel size is 9”)

Cables must be filtered before entering the MRI suit.
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Radiofrequency Interference
• Caused by RF leak 

– Scanner Door is Open 
– Wires running in/out of scan room 
– Faulty Room Shielding

Images Courtesy of http://chickscope.beckman.uiuc.edu/roosts/carl/artifacts.html
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How many artifacts can you see?
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How many artifacts can you see?

Noise 
Gradient Distortion 

Gibb’s Ringing 
Chemical Shift 
Coil shading



UCLA 
Radiology

Thanks

Daniel B. Ennis, Ph.D. 
ennis@ucla.edu 
310.206.0713 (Office) 
http://ennis.bol.ucla.edu 

Peter V. Ueberroth 
Bldg. 
Suite 1417, Room C 
10945 Le Conte Avenue


