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MRI...

e MRI has low signal levels
— Polarization is PPM
« Overcome with higher fields
— Improve detection
« High quality coil arrays
« Mostly body noise limited today
e MRIis slow...
— Slow to encode
« Compare to digital camera!
— Slow repetition times
» Relaxation time constants are long
— Need contrast agents
— Need faster gradients (1990s)
« Gradients are near optimal today



Gradient Encoding

5(8)= o, (7o

One-to-one correspondence between k-space
location and MRI signal

Speed of MRI is dependent on speed of travel in k-
space

K-space location is controlled by gradients
One MRI signal sample at a time!
— larger volume coverage -> longer scan time



Wait a minute...

e Can we increase the speed we travel in k-space
using higher gradients and faster switching?

Slow Nominal Faster
e Yes, you can, but...

— Peripheral nerve stimulation
— Gradient amplifier power considerations
— SNR considerations



Peripheral Nerve Stimulation

Switching of gradients -> time-varying magnetic
field -> electrical current -> nerve stimulation ->
tingling sensation

PNS is not dangerous, but can be disturbing

FDA limits PNS in MRI systems -> limits in
switching speed of gradients

Common Max slew rate: 200mT/m/ms



Gradient Amplifier

o Gradient amplifiers feed large electrical currents
iInto the gradient coill

e Gmax « Current [l, amps]

o Slewrate « Voltage [V, volts]

e Power=|V

o R-fold acceleration requires
e R-fold increase in Gmax

e RZ2-fold increase in slewrate
e Power=IV«R3!



SNR Loss

e Larger sampling bandwidth -> Larger anti-
aliasing filter BW -> allowing more noise power
into MRI signal -> decreasing SNR!

e Common Max Sampling Rate: 500KHz (2us
period)



Alternative Technique to Speed up MRI

e Reduce k-space samples

Parallel Imaging!



Why MRI using Coil Arrays

e Increased SNR



Sources of Noise in MRI

e Human Body

— Noise from human body is most significant at
high field

e Electronics
— Colls, Pre-Amps, amplifiers, filters, A/D
e |nterference

— Less of an issue



Multi-coil Reconstruction




Multi-coil Reconstruction




Multi-coil Reconstruction

Recommended Reading: “The NMR Phase Array”, Roemer et al, MRM 1990
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Ideal Coil Sens




In the ideal world...




Signal Equation with Coils

5(8) = o, (o

Coil Sensitivity
Modulation

S, (k)= [C, ()M, (e """ dr

Coil Sensitivity




MR Signal Equation — Discrete Form

S, (k) = j C,(rM,, (Fe """ dr

‘ 1D Simplification

S, (k)= |C,(IM ()™ dy




2-Voxel Case
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4 VVoxel Case
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Inverse Problem
S(0)=A+B+C+D S(1)=A-iB-C+iD

S(2)=A-B+C-D S(3)=A+iB-C-iD
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Orthonormal Fourier Encoding Matrix!




4 Voxels with Coils
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S,(0)= AC,(0)+ BC,(1)+ CC,(2)= DC,(3) 8, (0) = AC,(0)+ BC,(1)+CC,(2)+ DC,(3)
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Under-Sampling!
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Sensitivity Encoding Matrix!



k-space Under-sampling
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Sensitivity Encoding Matrix

e A huge matrix!
— 256%256%32 by 256*256

e Pseudo inverse can be simplified in Cartesian
sampling

e For non-Cartesian scanning, conjugate gradient
methods can be used to iteratively solve the
Inverse problem.

e Requires prior knowledge of coil sensitivity

— Errors in coll sensitivity causes artifacts

Recommended Reading: “SENSE: sensitivity encoding for fast MRI”, Pruessmann et
al, MRM 1999



Cartesian SENSE

Coil, Object*Coil,

Aliased
85 ?,g




Cartesian SENSE

Coil, Object*Coil,

Aliased
i
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Coil 2
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SENSE Rate-2

S1(71) - C1 (7)) Cy ()

Sa (1) Ca(r1) Co(m) | [ g (7)
5 ; E E L (72)

Sn(T1) | - Cp (1) Ch(72)

Known Known Unknown

[n x 1] [n x 2] [2 x 1]

I=C"S

C* = pseudoinverse (C)




SENSE and SNR

SNR
gV R

— Loss associated with scan time reduction

SNRSENSE =

e R -reduction or acceleration factor

— Typically ~1/2 N-coils
e (- geometry factor
— Loss associated with coil correlation
— For R=1, g=1
— For R=2, g=~1.5-2
e SNR is spatially dependent

— Higher in areas of aliasing



How Fast Can We Go?




Sensitivity Encoding Matrix Conditioning

e Depends on several factors
— Accuracy of coil sensitivity
— K-space under-sampling pattern
— Coil geometry and sensitivity

e Noise is amplified during inversion

— G-factor



Parallel Imaging Tradeoffs

ZE

& 12-channel &
ref I Head Matrix Coil PAT x 2
\ / f» = acceleration
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g = coil geometry
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1/g-Map for Rate-4

©o elements 32 elements 16 elements

Relative
SNR
Scale

12 elements 8 elements



aliased SENSE g-map

G-factor and its impact on image
Rate 1 2 2.4 3 4

Pruessmann et al, MRM 1999



1/g-factor map & Rate-4

8-channel Head coil Rate-4 (tight FOV)



Outstanding Problems

e SNR optimization
— Coil design
— Reconstruction algorithms

e Estimation of true coil sensitivities



Coil Sensitivity Estimation

Pruessmann et al, MRM 1999



Dependence on coil sensitivity accuracy

e |mages reconstructed using coil sensitivity
maps calculated using different order P of
polynomial fitting

P=0 P=1 P=2

Pruessmann et al, MRM 1999



K-space based parallel imaging methods



Synthesizing spatial harmonics
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Use of Harmonics: Skipping k-space lines
>'nS,(k,)=Sk, +Ak,)

Coil 1 Coil 2
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Coil sensitivity

What frequency can we synthesize?

e Depends on the frequency component of coil
SEEIOIES

e Extreme Example:

Ci(y) Cy(y) C™(y)



Spatial Harmonics
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Sodickson et al, MRM 38:591-603



SMASH

Image

..................;i

Reconstruct Missing k-space



Auto-Calibration

Coil 1 Coil 2
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Variations of SMASH

AUTD.SMASH
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Comparison b/w SENSE and SMASH

e SMASH is a special case of SENSE

— Spatial harmonics allow for reduction of
encoding matrix

e SMASH does not require direct measurement of
coll sensitivity

— Auto-calibrating
e SENSE fails when FOV < Object size



Parallel Imaging Summary

e Parallel imaging uses coil sensitivities to speed
up MRI acquisition

o Cases for parallel imaging

— Higher patient throughput, real-time imaging,
Imaging for interventions, motion suppression

e Cases against parallel imaging

— SNR starving applications, imaging coil map
problems



Compressed Sensing MRI

e CS is a method complimentary to parallel
Imaging to speed up image acquisitions

e Two requirements
— Sparsity in a transform domain

— Random under-sampling



e Jo the board...



Introduction to CS

Sparse Signal k-space of Sparse Signal
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Introduction to CS
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Types of Sparsity

In iImage domain

— CE-MR Angiography

In temporal domain

— cine cardiac MRI

In both temporal and image domain
— Dynamic CE-MRA

— DCE perfusion



Sparsity in MRA images

LP




DCE MRA and Perfusion

o Background Subtraction before CS

— Enhanced sparsity, higher temp. resol.
Systole == Diastole —  Diff.

Storey, Lee, NYU, ISMRM 2010



Sparsity in Time




Questions?

Peng Hu, Ph.D.

300 Medical Plaza B119
310 267 6838
penghu@mednet.ucla.edu

http://mrrl.ucla.edu/meet-our-team/hu-lab/
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