Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences <u>PengHu@mednet.ucla.edu</u> 310-267-6838

MRI...

- MRI has low signal levels
 - Polarization is PPM
 - Overcome with higher fields
 - Improve detection
 - High quality coil arrays
 - Mostly body noise limited today
- MRI is slow...
 - Slow to encode
 - Compare to digital camera!
 - Slow repetition times
 - Relaxation time constants are long
 - Need contrast agents
 - Need faster gradients (1990s)
 - Gradients are near optimal today

Gradient Encoding

$$S(\vec{k}) = \int_{r} M_{xy}(\vec{r}) e^{-i2\pi \vec{k}\cdot\vec{r}} d\vec{r}$$

- One-to-one correspondence between k-space location and MRI signal
- Speed of MRI is dependent on speed of travel in kspace
- K-space location is controlled by gradients
- One MRI signal sample at a time!
 - larger volume coverage -> longer scan time

Wait a minute...

 Can we increase the speed we travel in k-space using higher gradients and faster switching?

Slow Nominal
 Yes, you can, but...

Faster

- Peripheral nerve stimulation
- Gradient amplifier power considerations
- SNR considerations

Peripheral Nerve Stimulation

- Switching of gradients -> time-varying magnetic field -> electrical current -> nerve stimulation -> tingling sensation
- PNS is not dangerous, but can be disturbing
- FDA limits PNS in MRI systems -> limits in switching speed of gradients
- Common Max slew rate: 200mT/m/ms

Gradient Amplifier

- Gradient amplifiers feed large electrical currents into the gradient coil
- G_{max ~} Current [I, amps]
- Slewrate ~ Voltage [V, volts]
- Power=IV
- R-fold acceleration requires
 - R-fold increase in Gmax
 - R²-fold increase in slewrate
 - Power=IV_~R³!!!

SNR Loss

- Larger sampling bandwidth -> Larger antialiasing filter BW -> allowing more noise power into MRI signal -> decreasing SNR!
- Common Max Sampling Rate: 500KHz (2us period)

Alternative Technique to Speed up MRI

• Reduce k-space samples

Parallel Imaging!

Why MRI using Coil Arrays

Increased SNR

Sources of Noise in MRI

Human Body

- Noise from human body is most significant at high field
- Electronics
 - Coils, Pre-Amps, amplifiers, filters, A/D
- Interference
 - Less of an issue

Multi-coil Reconstruction

Multi-coil Reconstruction

Multi-coil Reconstruction

Recommended Reading: "The NMR Phase Array", Roemer et al, MRM 1990

Ideal Coil Sensitivity

In the ideal world...

Signal Equation with Coils

 $S(\vec{k}) = \int M_{xy}(\vec{r}) e^{-i2\pi \vec{k}\cdot\vec{r}} d\vec{r}$ Coil Sensitivity Modulation $S_{\gamma}(\vec{k}) = \int C_{\gamma}(\vec{r}) M_{xy}(\vec{r}) e^{-i2\pi \vec{k} \cdot \vec{r}} d\vec{r}$ Coil Sensitivity

MR Signal Equation – Discrete Form

 $S_{\gamma}(\vec{k}) = \int C_{\gamma}(\vec{r}) M_{xy}(\vec{r}) e^{-i2\pi \vec{k} \cdot \vec{r}} d\vec{r}$ 1D Simplification $S_{\gamma}(k_{y}) = \int C_{\gamma}(y) M(y) e^{-i2\pi k_{y}y} dy$ Discrete Form $S_{\gamma}(v) = \sum_{0 \le v \le N} C_{\gamma}(u) M(u) e^{-i2\pi \frac{uv}{N}}, 0 \le v \le N-1$ $0 \le u \le N - 1$

2-Voxel Case

$S(0) = A + B \quad S(1) = A - B$

$$S(0) = A + B \quad S(1) = A - B$$
$$\binom{A}{B} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} S(0) \\ S(1) \end{pmatrix}$$
$$= \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} S(0) \\ S(1) \end{pmatrix}$$

4 Voxel Case

$$S(v) = \sum_{0 \le u \le N-1} M(u) e^{-i2\pi \frac{uv}{N}}, 0 \le v \le N-1$$

 $S(0) = A + B + C + D \qquad S(1) = A - iB - C + iD$ $S(2) = A - B + C - D \qquad S(3) = A + iB - C - iD$

Inverse Problem

Orthonormal Fourier Encoding Matrix!

4 Voxels with Coils

$$S_{\gamma}\left(v\right) = \sum_{0 \le u \le N-1} C_{\gamma}(u) M\left(u\right) e^{-i2\pi \frac{uv}{N}}, 0 \le v \le N-1$$

Coil 1

 $S_{1}(0) = AC_{1}(0) + BC_{1}(1) + CC_{1}(2) + DC_{1}(3)$

 $S_{1}(1) = AC_{1}(0) - iBC_{1}(1) - CC_{1}(2) + iDC_{1}(3)$

 $S_{1}(2) = AC_{1}(0) - BC_{1}(1) + CC_{1}(2) - DC_{1}(3)$

 $S_1(3) = AC_1(0) + iBC_1(1) - CC_1(2) - iDC_1(3)$

 $S_2(1) = AC_2(0) - iBC_2(1) - CC_2(2) + iDC_2(3)$ $S_2(2) = AC_2(0) - BC_2(1) + CC_2(2) - DC_2(3)$ $S_2(3) = AC_2(0) + iBC_2(1) - CC_2(2) - iDC_2(3)$

Coil 2

 $S_2(0) = AC_2(0) + BC_2(1) + CC_2(2) + DC_2(3)$

Over-determined!

 $C_{1}(3)$ $S_{1}(0)$ $C_{1}(0)$ $C_{1}(1)$ $C_{1}(2)$ $C_{1}(0)$ $iC_{1}(3)$ $S_{1}(1)$ $-iC_{1}(1)$ $-C_{1}(2)$ $C_{1}(0)$ $C_{1}(2)$ $S_1(2)$ $-C_{1}(1)$ $-C_{1}(3)$ A $C_{1}(0)$ $iC_{1}(1)$ $S_{1}(3)$ B $-C_{1}(2)$ $-iC_{1}(3)$ C $C_{2}(0)$ $C_{2}(1)$ $C_{2}(2)$ $C_{2}(3)$ $S_{2}(0)$ $iC_{2}(3)$ D $C_{2}(0)$ $-iC_{2}(1)$ $-C_{2}(2)$ $S_{2}(1)$ $C_{2}(2)$ $C_{2}(0)$ $-C_{2}(1)$ $-C_{2}(3)$ $S_{2}(2)$ $iC_{2}(1)$ $C_{2}(0)$ $-C_{2}(2)$ $-iC_{2}(3)$ $S_{2}(3)$

Under-Sampling!

k-space Under-sampling

SENSE

Sensitivity Encoding Matrix

- A huge matrix!
 - 256*256*32 by 256*256
- Pseudo inverse can be simplified in Cartesian sampling
- For non-Cartesian scanning, conjugate gradient methods can be used to iteratively solve the inverse problem.
- Requires prior knowledge of coil sensitivity
 Errors in coil sensitivity causes artifacts

Recommended Reading: "SENSE: sensitivity encoding for fast MRI", Pruessmann et al, MRM 1999

Cartesian SENSE

$S_{1}(\vec{r}_{1}) = C_{1}(\vec{r}_{1}) I(\vec{r}_{1}) + C_{1}(\vec{r}_{2}) I(\vec{r}_{2})$

Cartesian SENSE

$\begin{array}{rcl} S_{1}\left(\vec{r_{1}}\right) & = & C_{1}\left(\vec{r_{1}}\right)I\left(\vec{r_{1}}\right) & + & C_{1}\left(\vec{r_{2}}\right)\overline{I\left(\vec{r_{2}}\right)} \\ S_{2}\left(\vec{r_{1}}\right) & = & C_{2}\left(\vec{r_{1}}\right)I\left(\vec{r_{1}}\right) & + & C_{2}\left(\vec{r_{2}}\right)I\left(\vec{r_{2}}\right) \end{array}$

$S_{1}(\vec{r}_{1}) = C_{1}(\vec{r}_{1}) I(\vec{r}_{1}) + C_{1}(\vec{r}_{2}) I(\vec{r}_{2})$

$S_{2}(\vec{r}_{1}) = C_{2}(\vec{r}_{1}) I(\vec{r}_{1}) + C_{2}(\vec{r}_{2}) I(\vec{r}_{2})$

SENSE Rate-2

$\mathbf{I} = \mathbf{C}^{+} \mathbf{S}$ $\mathbf{C}^{+} = pseudoinverse(\mathbf{C})$

SENSE and SNR

 $SNR_{SENSE} = \frac{SNR}{g\sqrt{R}}$

• R - reduction or acceleration factor

- Loss associated with scan time reduction
- Typically ~1/2 N-coils
- g geometry factor
 - Loss associated with coil correlation
 - For R=1, g=1
 - For R=2, g=~1.5-2
- SNR is spatially dependent
 - Higher in areas of aliasing

How Fast Can We Go?

Sensitivity Encoding Matrix Conditioning

- Depends on several factors
 - Accuracy of coil sensitivity
 - K-space under-sampling pattern
 - Coil geometry and sensitivity

- Noise is amplified during inversion
 - G-factor

Parallel Imaging Tradeoffs

1/g-Map for Rate-4

∞ elements

32 elements

16 elements

Relative SNR Scale

12 elements

8 elements

G-factor and its impact on image

Pruessmann et al, MRM 1999

1/g-factor map & Rate-4

8-channel Head coil Rate-4 (tight FOV)

Outstanding Problems

- SNR optimization
 - Coil design
 - Reconstruction algorithms
- Estimation of *true* coil sensitivities

Coil Sensitivity Estimation

Pruessmann et al, MRM 1999

Dependence on coil sensitivity accuracy

 Images reconstructed using coil sensitivity maps calculated using different order P of polynomial fitting

P=0

P=1

P=2

Pruessmann et al, MRM 1999

K-space based parallel imaging methods

Synthesizing spatial harmonics

$$S_{\gamma}(k_{y}) = \int_{y} C_{\gamma}(y) M(y) e^{-i2\pi k_{y}y} dy$$

$$C^{comp}(y) = \sum_{\gamma} n_{\gamma} C_{\gamma}(y) = e^{-i2\pi\Delta k_{\gamma} y}$$

THEN

IF

$$\sum_{\gamma} n_{\gamma} S_{\gamma} \left(k_{y} \right) = \sum_{\gamma} n_{\gamma} \int_{y} C_{\gamma} \left(y \right) M(y) e^{-i2\pi k_{y} y} dy$$
$$= \int_{y} \left(\sum_{\gamma} n_{\gamma} C_{\gamma}(y) \right) M(y) e^{-i2\pi k_{y} \cdot y} dy = \int_{y} M(y) e^{-i2\pi (k_{y} + \Delta k_{y}) y}$$
$$= S(k_{y} + \Delta k_{y})$$

Use of Harmonics: Skipping k-space lines

What frequency can we synthesize?

- Depends on the frequency component of coil sensitivities
- Extreme Example:

Spatial Harmonics

Sodickson et al, MRM 38:591-603

SMASH

Reconstruct Missing k-space

Auto-Calibration

Coil 1

 $\sum n_{\gamma} S_{\gamma} \left(k_{\gamma} \right) = S(k_{\gamma} + \Delta k_{\gamma})$

Variations of SMASH

Comparison b/w SENSE and SMASH

- SMASH is a special case of SENSE
 - Spatial harmonics allow for reduction of encoding matrix
- SMASH does not require direct measurement of coil sensitivity
 - Auto-calibrating
- SENSE fails when FOV < Object size

Parallel Imaging Summary

- Parallel imaging uses coil sensitivities to speed up MRI acquisition
- Cases for parallel imaging
 - Higher patient throughput, real-time imaging, imaging for interventions, motion suppression
- Cases against parallel imaging
 - SNR starving applications, imaging coil map problems

Compressed Sensing MRI

- CS is a method complimentary to parallel imaging to speed up image acquisitions
- Two requirements
 - Sparsity in a transform domain
 - Random under-sampling

• To the board...

Introduction to CS

Lustig MRM 2007

Introduction to CS

Lustig MRM 2007

Types of Sparsity

- In image domain
 - CE-MR Angiography
- In temporal domain
 - cine cardiac MRI
- In both temporal and image domain
 - Dynamic CE-MRA
 - DCE perfusion

. . .

Sparsity in MRA images

DCE MRA and Perfusion

Background Subtraction before CS

 Enhanced sparsity, higher temp. resol.
 Systole
 Diastole
 Diff.

Storey, Lee, NYU, ISMRM 2010

Sparsity in Time

Questions?

- Peng Hu, Ph.D.
- 300 Medical Plaza B119
- 310 267 6838
- penghu@mednet.ucla.edu
- http://mrrl.ucla.edu/meet-our-team/hu-lab/

