%% HW01 Problem #4A % Define some constants alpha=pi/2; % 180° saturation pulse [rad] gamma=40.05; % 19F gyromagnetic ratio in [Hz/µT] B1_max=25; % Max B1 amplitude in [µT]h B0=3; % B0 in [T] t_RF=(alpha*pi)/(2*2*pi*gamma*1e6*B1_max*1e-6)%1e6*alpha/(2*pi*gamma*B1_max); % Shortest RF pulse duration in [µs] w_RF=2*pi*gamma*B0*1e6; % RF pulse carrier frequence in [rad/s] t=linspace(0,t_RF,1000000); % Time vector [µs] B1=B1_max*sin(pi*t/t_RF).*exp(-i*w_RF*t); % B1 pulse % NOTE: The complete solution must be written out for full credit. This % code just helps calculate some values... % Plot the components of the resultant B1 pulse amplitude in the laboratory % frame as a function of time. figure; hold on; plot(t,real(B1),'r','linewidth',1.5); plot(t,imag(B1),'b','linewidth',1.5); axis([0 0.001 -30 30]); xlabel('Time [s]'); ylabel('B1 Amplitude [µT]'); title('90-deg 19F B1-Pulse @ 25µT'); set(gcf,'Color','w'); set(gca,'Color','w','XColor','k','YColor','k'); set(gca,'Color','w','XColor','k','YColor','k','LineWidth',1.25,'Fontsize',11,'Fontweight','bold'); set(get(gca,'Title'),'Color','k','FontSize',16); set(get(gca,'Xlabel'),'FontSize',14,'fontweight','bold'); set(get(gca,'Ylabel'),'FontSize',14,'fontweight','bold'); grid('on') print2desktop('/Users/pmagrath/desktop/','HW1_P4_19F_1B') figure; hold on; plot(t,real(B1),'r','linewidth',1.5); plot(t,imag(B1),'b','linewidth',1.5); axis([.0003 0.0003005 -16 16]); xlabel('Time [s]'); ylabel('B1 Amplitude [µT]'); %title('90-deg 1H B1-Pulse @ 25µT'); legend('Real','Imaginary') title('90-deg 19F B1-Pulse @ 25µT'); set(gcf,'Color','w'); set(gca,'Color','w','XColor','k','YColor','k'); set(gca,'Color','w','XColor','k','YColor','k','LineWidth',1.25,'Fontsize',11,'Fontweight','bold'); set(get(gca,'Title'),'Color','k','FontSize',16); set(get(gca,'Xlabel'),'FontSize',14,'fontweight','bold'); set(get(gca,'Ylabel'),'FontSize',14,'fontweight','bold'); grid('on') print2desktop('/Users/pmagrath/desktop/','HW1_P4_19F_2B')