Bulk Magnetization and Nuclear Precession

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/10/2022

Course Overview

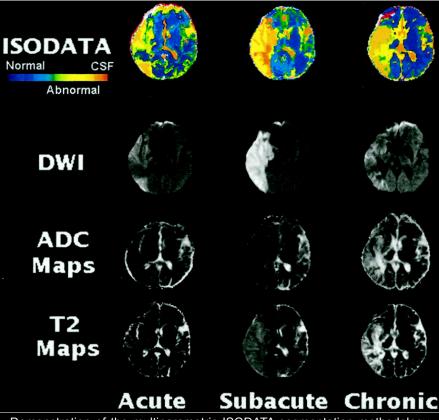
- Course website
 - https://mrrl.ucla.edu/pages/m219
- Course schedule
 - https://mrrl.ucla.edu/pages/m219_2022
- Assignments
 - Homework #1 due on 1/26 by 5pm
- Office hours
 - TBD

	Date	Lecture Topic	Reading and Assignments
#1	1/3 Mon	Introduction slides	
#2	1/5 Wed	MRI Systems I: B0 slides	 Advances in whole-body MRI magnet Superconducting systems for MRI MR safe practices
#3	1/10 Mon	Bulk Magnetization and Nuclear Precession	Homework #1 out
#4	1/12 Wed	MRI Systems II: B1	
#5	1/17 Mon	No Lecture - MLK Holiday	
#6	1/19 Wed	Bloch Equations and Relaxation / MRI Signal Detection	
#7	1/24 Mon	MRI Systems III: Gradients	
#8	1/26 Wed	Fundamental Math of MRI	Homework #1 due, Homework #2 out
#9	1/31 Mon	Spatial Localization I	
#10	2/2 Wed	Spatial Localization II	

Requirements for MRI

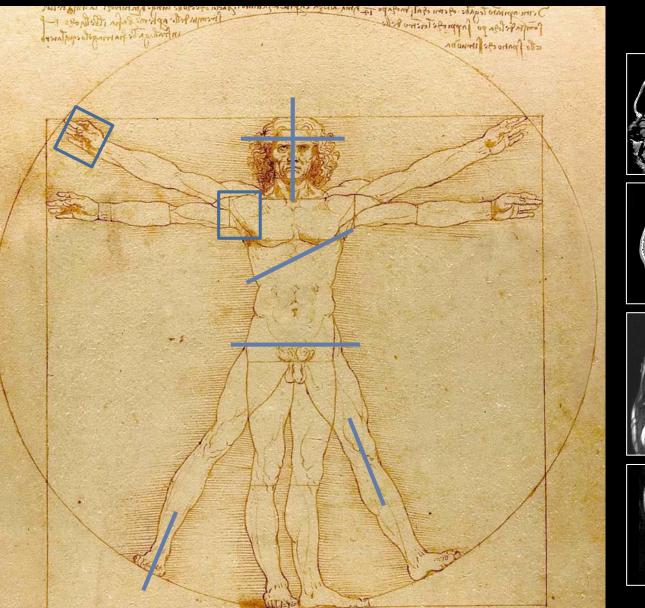
- NMR Active Nuclei
 - e.g. ¹H in H₂0
- Magnetic Field (B₀): Polarizer
- RF System (B₁): Exciter
- Coil: Receiver
- Gradients (G_X, G_Y, G_Z): Spatial Encoding

MRI Advantages


Tissue Characterization

Routine

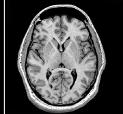
- T₁, T₂, T₂^{*}, proton weighted
- Perfusion
- Diffusion
- Contrast enhancement
 - Tumor evaluation

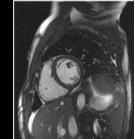

Advanced

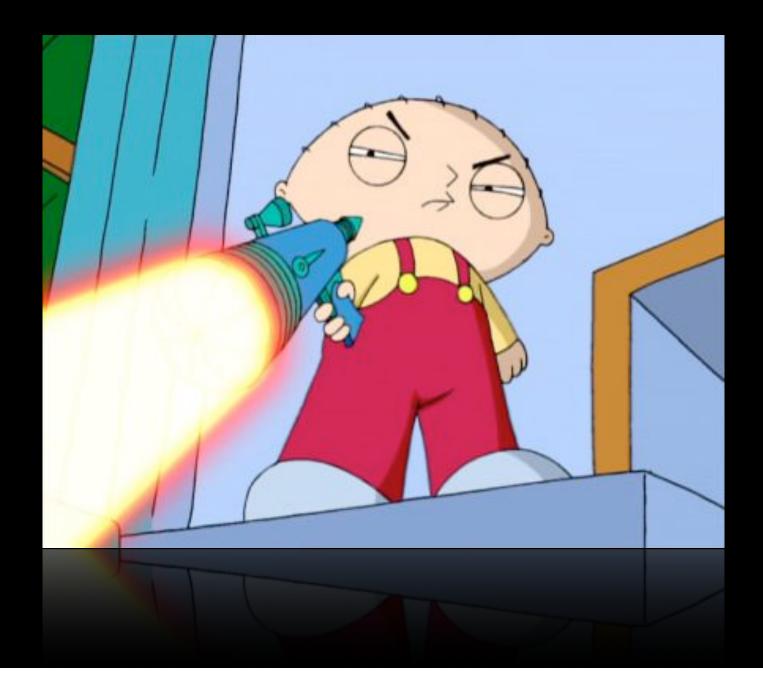
- T1- and T2-mapping
- Fat/Water & Iron quantification
- Spectroscopy (molecular)
- Susceptibility weighted imaging (SWI) for blood products and calcium
- Non-contrast angiography

Demonstration of the multiparametric ISODATA segmentation methodology and corresponding DWI (b=1000 s/mm2), ADC map, and T2 map at different times after stroke. *Jacobs M A et al. Stroke. 2001;32:950-957*

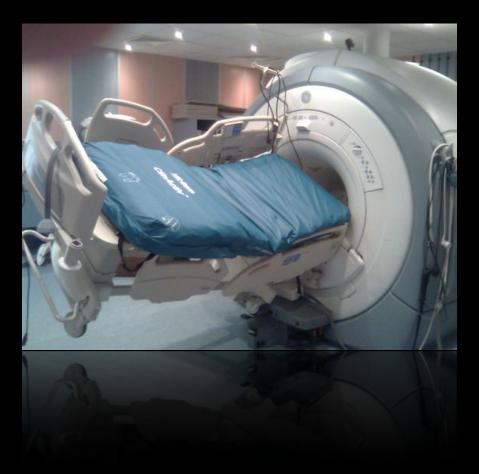
Arbitrary Imaging Planes







No Ionizing Radiation



MRI Disadvantages

MRI - Disadvantages

Safety

- Main Field (B₀)
- Radiofrequency Field (B₁)
- Gradients (G_x , G_y , and G_z)
- Slow
- Expensive
- Technically challenging

MRI Safety Designations

MR Safe: "An item that poses no known hazards in all MR environments." (e.g. a plastic Petri dish)

MR Conditional: "An item that has been demonstrated to pose no known hazards in a specified MR environment with specified conditions of use. Field conditions that define the specified MR environment include field strength, spatial gradient, dB/dt (time rate of change of the magnetic field), radio frequency fields, and specific absorption rate. Additional conditions, including specific configurations of the item, may be required." (e.g. a Patient Monitor) MR Unsafe: "An item that is known to pose hazards in all MR environments." (e.g. Floor Buffer)

"MRI Compatible" is not an FDA term.

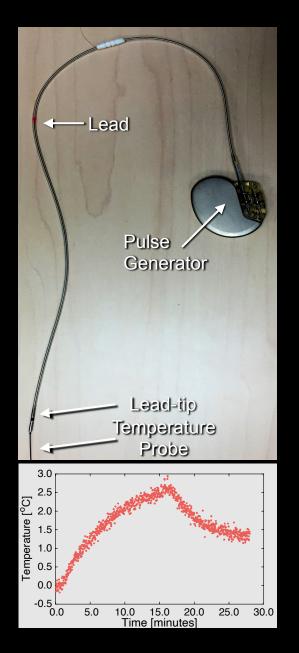
RF (B₁) Safety - SAR Limits

- RF pulses deposit energy in the body.
- Specific Absorption Rate [W/kg]
 - Rate of energy absorption during exposure to RF
- High-field (>1.5T) imaging with high flip angles (>45-90°) can be challenging. $SAR \propto \omega_0^2 B_1^2 \propto B_0^2 \alpha^2$

Limit	Whole-Body Average	
Normal (all patients)	2 W/kg (0.5°C)	
First level (supervised)	4 W/kg (1°C)	

The scanner (FDA!) limits SAR, which in turn limits the max. flip angle.

Bottomley PA. Turning up the heat on MRI. J Am Coll Radiol 2008;5(7):853-855.


RF (B₁) Safety - Burns & Heating

- **Tissue burns**
- **RF induced heating of** \bigcirc implanted devices

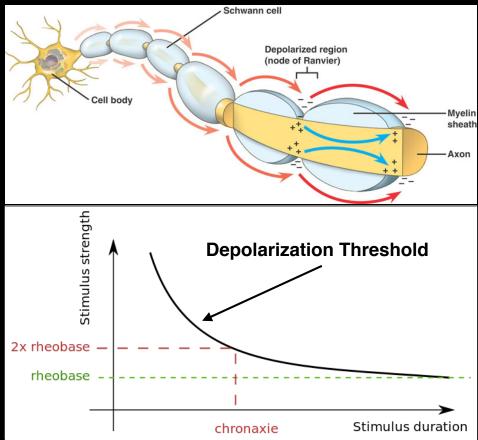
Solution: Avoid skin-to-skin loops; avoid arms directly touching scanner bore.

RF energy contributes to patient and device heating (or burns!).

Eising EG et al. J. Clin. Imaging 2010;34(4):293-29

Gradient Safety

- Noise
- **Peripheral nerve** \bigcirc stimulation (PNS)



Head phones

Time-varying gradients induce mechanical vibrations and PNS.

Solution: De-rate gradient slew rates, but this increases scan time.

MRI is Expensive

- Purchase
 - \$1-3 million
- Site
 - \$0.5-1.0 million
- Maintain (Service Contract)
 - \$100,000 per year
- Operate
 - \$500-1000/hour

Technically Challenging

- Numerous scan parameters
 - Dependent upon clinical question
 - Spin Echo vs Gradient Echo
 - TE, TR, TI, Flip Angle, Bandwidth
- Physiologic Monitoring
 - ECG
 - Respiration
 - Blood Pressure
 - General anesthesia/Sedation
- Breath holding
- Contrast agents
- Coil Selection
- Anatomic Localization

Quiz: NMR - True or False?

- 1. Electron spin is the key to NMR
- 2. MRI is *nothing* without spin, charge, and mass
- 3. All atomic nuclei are NMR active.
- 4. Spin and precession are the same.
- 5. Higher fields lead to faster precession

Quiz: Main Field - True or False?

- 1. B_0 is rare earth permanent magnet.
- 2. 1 Tesla=1000 Gauss.
- Higher fields increase polarization, which contributes to better image quality
- 4. Exams at higher fields have lower SAR.
- 5. ¹H always precesses at the same Larmor frequency.

Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - >1.5T
 - Z-oriented
- B₀ generates bulk magnetization (\vec{M})
 - More B₀, more

 $\vec{B}_0 = B_0 \vec{k}$

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n$$

- B₀ forces \vec{M} to precess
 - Larmor Equation

$$\omega = \gamma B$$

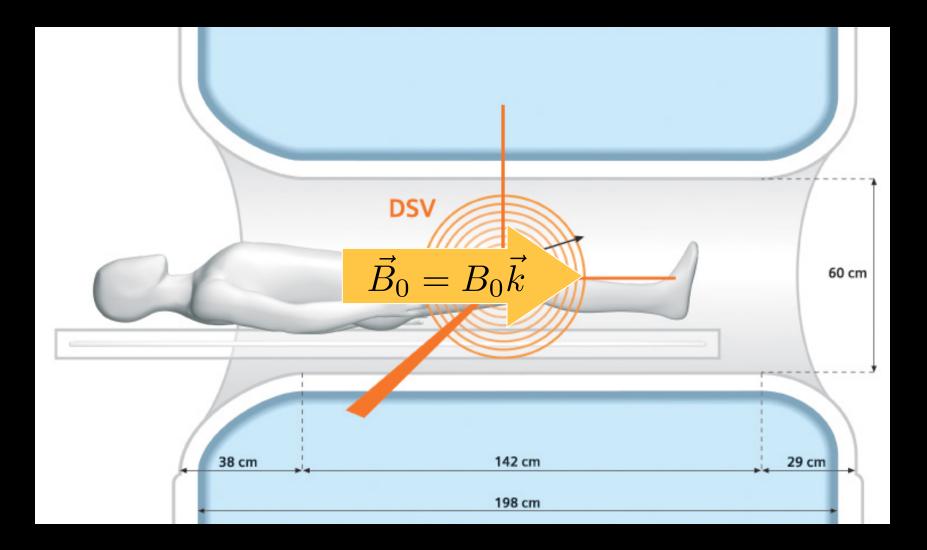
Main Field (B₀) - Principles

B₀ is a strong magnetic field

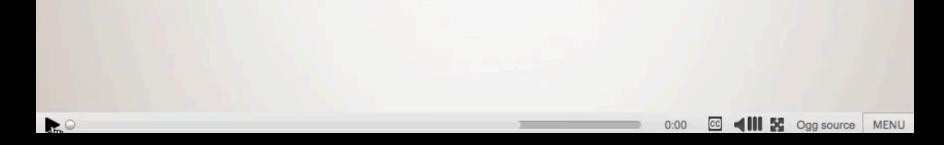
 $\dot{B_0} = B_0 \dot{k}$

- ->1.5T
- Z-oriented
- B₀ generates bulk magnetization (M)
 – More B₀, more

Ntotal $n_{\rm c} \equiv$


- B₀ forces \vec{M} to precess
 - Larmor Equation

$$\omega = \gamma B$$



Nuclear Spin

How was spin first observed?

THE SPIN, A QUANTUM MAGNET

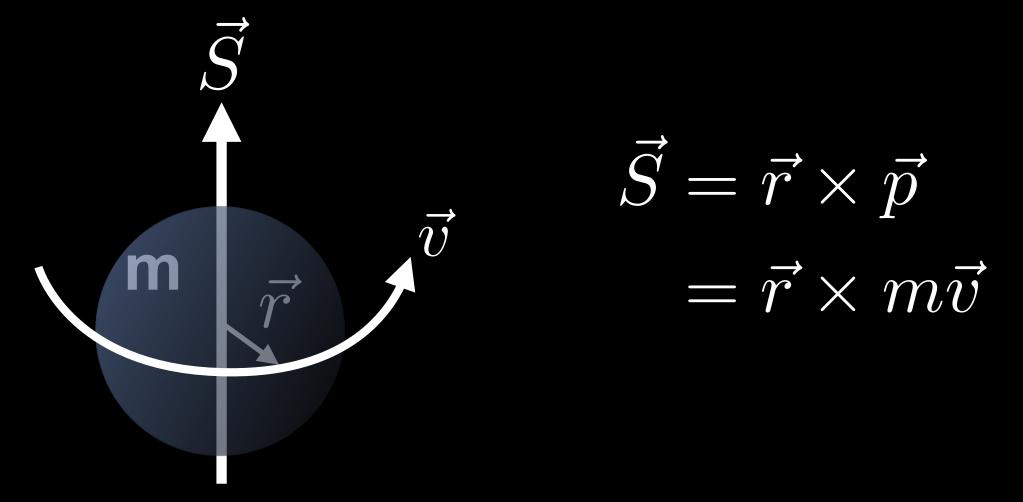
All the animations and explanations on www.toutestquantique.fr

Otto Stern and Walther Gerlach performed the Stern–Gerlach experiment in Frankfurt, Germany in 1922.

Spin Angular Momentum

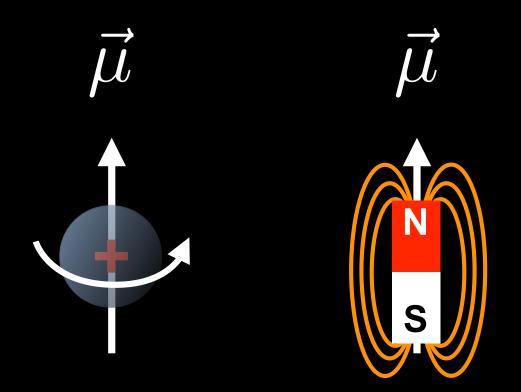
Spin + Mass \rightarrow Spin Angular Momentum \rightarrow \vec{S} [kg·m²s⁻¹]

ec v



Spin Angular Momentum

Spin + Mass \rightarrow Spin Angular Momentum \rightarrow \vec{S} [kg·m²s⁻¹]



Magnetic Dipole Moments

Spin + Charge \rightarrow Magnetic Moment \rightarrow $\vec{\mu}$ [J•T⁻¹ or kg•m²/s²/T]

"a measure of the strength of the system's net magnetic source" --http://en.wikipedia.org/wiki/Magnetic_moment

Hydrogen nuclei have magnetic dipole moments.

Gyromagnetic Ratio

- Gyromagnetic Ratio
 - Physical constant
 - Unique for each NMR active nuclei
 - Ratio of the magnetic moment to the angular momentum

$$\vec{\mu} = \gamma \vec{S}$$

- Governs the frequency of *precession*
- Gamma vs. Gamma-bar

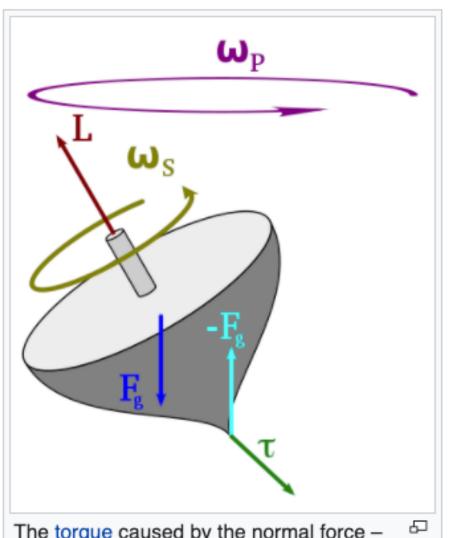
$$\gamma = \gamma/2\pi$$

NMR Active Nuclei

lsotope	Spin [I]	Natural Abundance	Gyromagnetic Ratio [MHz/T]	Relative Sensitivity	Absolute Sensitivity
1 H	1/2	0.9980	42.57	1	9.98E-01
² H	1	0.0160	6.54	0.015	2.40E-04
12 C	0	0.9890			
13 C	1/2	0.0110	10.71	0.016	1.76E-04
¹⁴ N	1	0.9960	3.08	0.001	9.96E-04
15 N	1/2	0.0040	-4.32	0.001	4.00E-06
16 O	0	0.9890			
¹⁷ O	5/2	0.0004	-5.77	0.029	1.16E-05
¹⁹ F	1/2	1.0000	40.05	0.83	8.30E-01
²³ Na	3/2	1.0000	11.26	0.093	9.30E-02
³¹ P	1/2	1.0000	17.24	0.066	6.60E-02

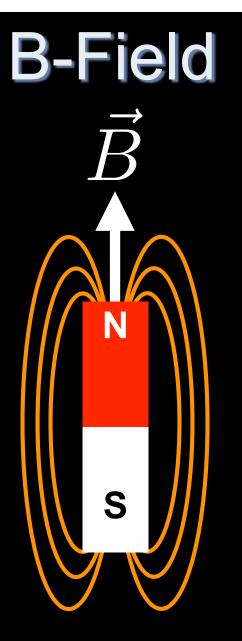
The *relative* sensitivity is at constant magnetic field and equal number of nuclei.

– Using a factor of $\gamma^{\frac{11}{4}}I(I+1)$; ¹H is the reference standard.


The *absolute* sensitivity is the relative sensitivity multiplied by natural abundance.

P. Callaghan & http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/nuclei.htm

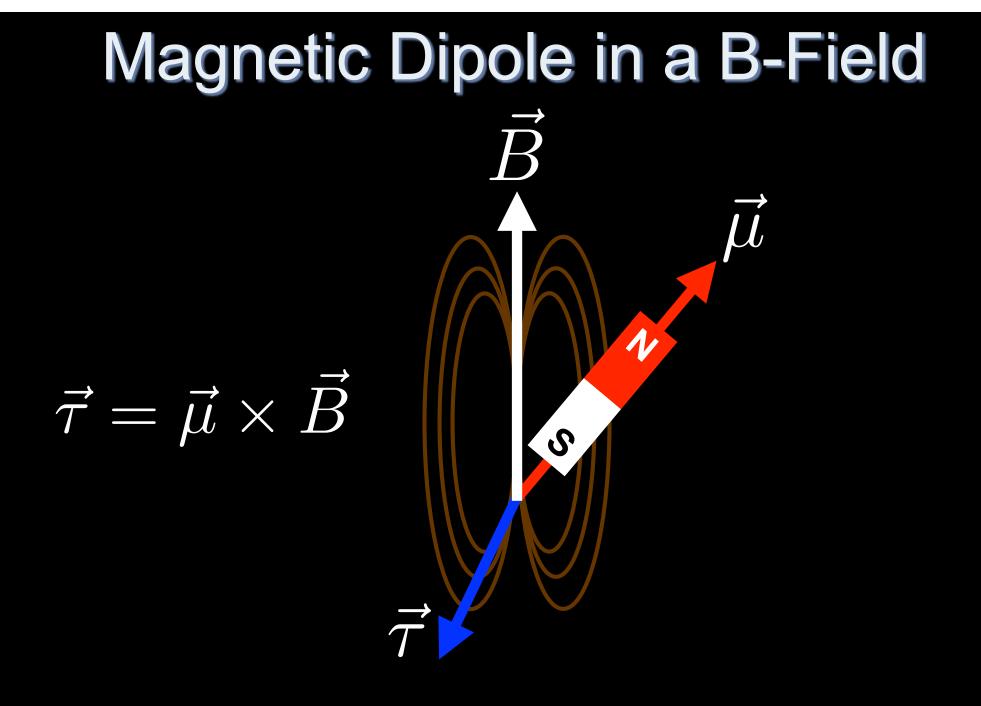
Precession



The torque caused by the normal force – \Box \mathbf{F}_{g} and the weight of the top causes a change in the angular momentum \mathbf{L} in the direction of that torque. This causes the top to precess.

David Geffen School of Medicine

https://en.wikipedia.org/wiki/Precession



"vector field which can exert a magnetic force on moving electric charges and on magnetic dipoles" --http://en.wikipedia.org/wiki/Magnetic_field

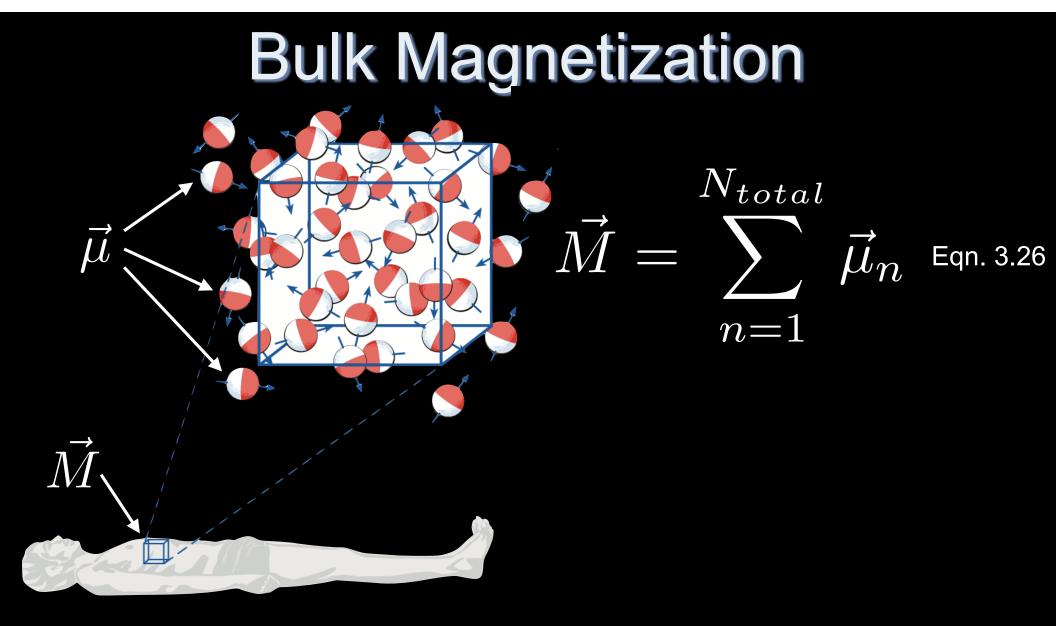
To The Board...

Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - ->1.5T
 - Z-oriented
- B₀ generates bulk magnetization (*M*)
 – More B₀, more

 $\vec{B}_0 = B_0 \vec{k}$ Eqn. 3.5

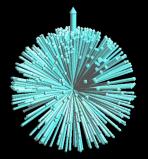
$$ec{M} = \sum_{n=1}^{N_{total}} ec{\mu_n}$$
 Eqn. 3.26


 $\omega = \gamma B$

- B₀ forces \vec{M} to precess
 - Larmor Equation

Eqn. 3.18

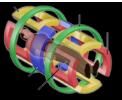
N_{total}=0.24x10²³ spins in a 2x2x10mm voxel But not all spins contribute to our measured signal...

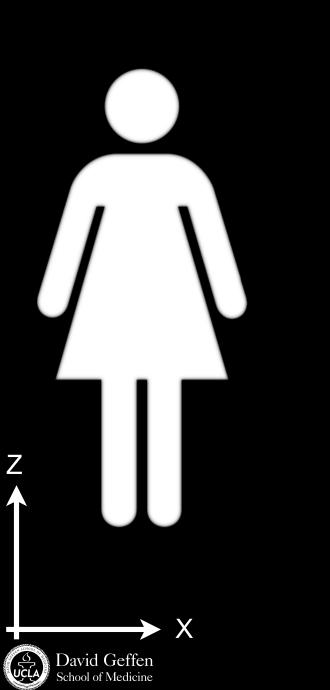

Equilibrium Bulk Magnetization

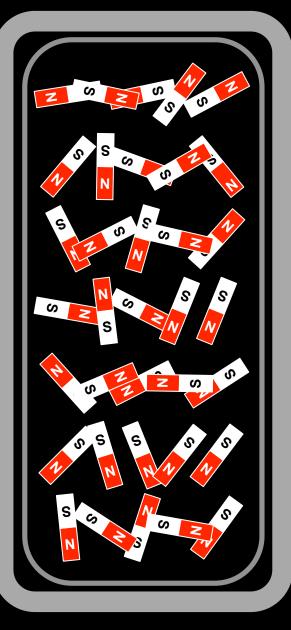
$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n$$

$$\vec{M} = M_x \hat{i} + M_y \hat{j} + M_z \hat{k}$$

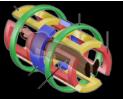
$$\vec{M}_z^0 = |\vec{M}| = \frac{\gamma^2 \hbar^2 B_0 N_s}{4KT_s}$$

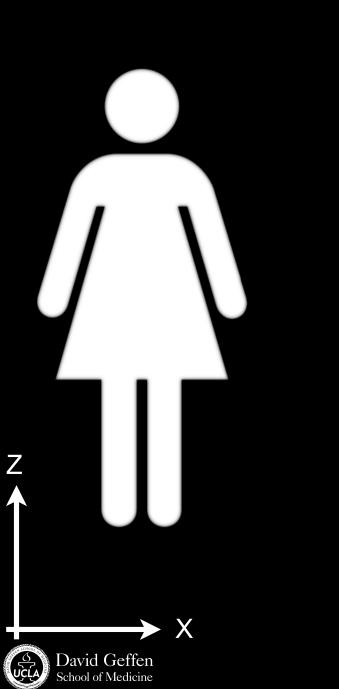

$$\vec{M}_x^0 = \vec{M}_y^0 = 0$$

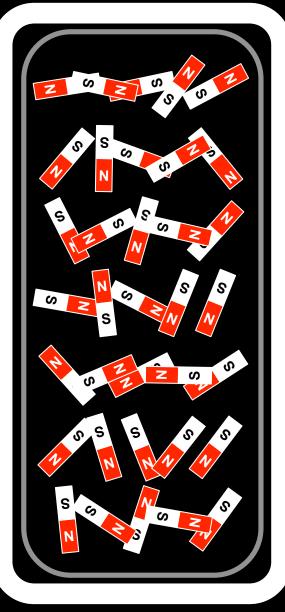



Bulk magnetization at equilibrium in a B₀ field.

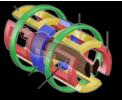
B₀ Field OFF




$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = 0$$

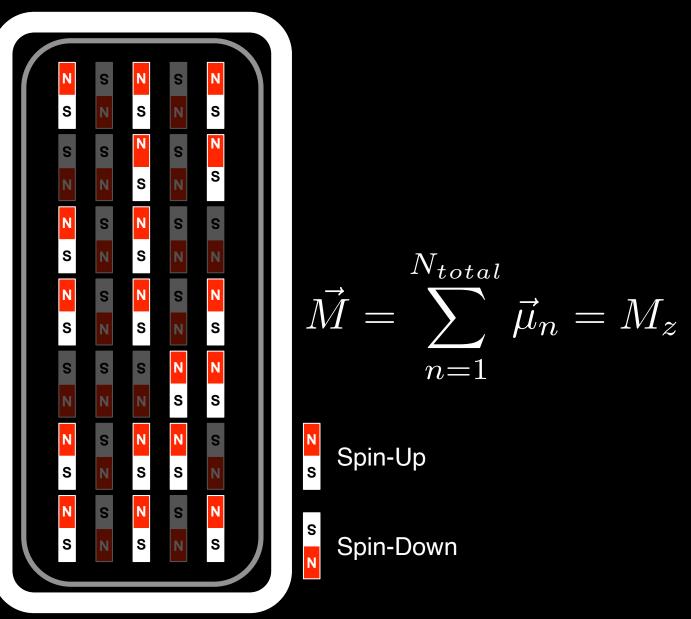

Spins point in all directions.

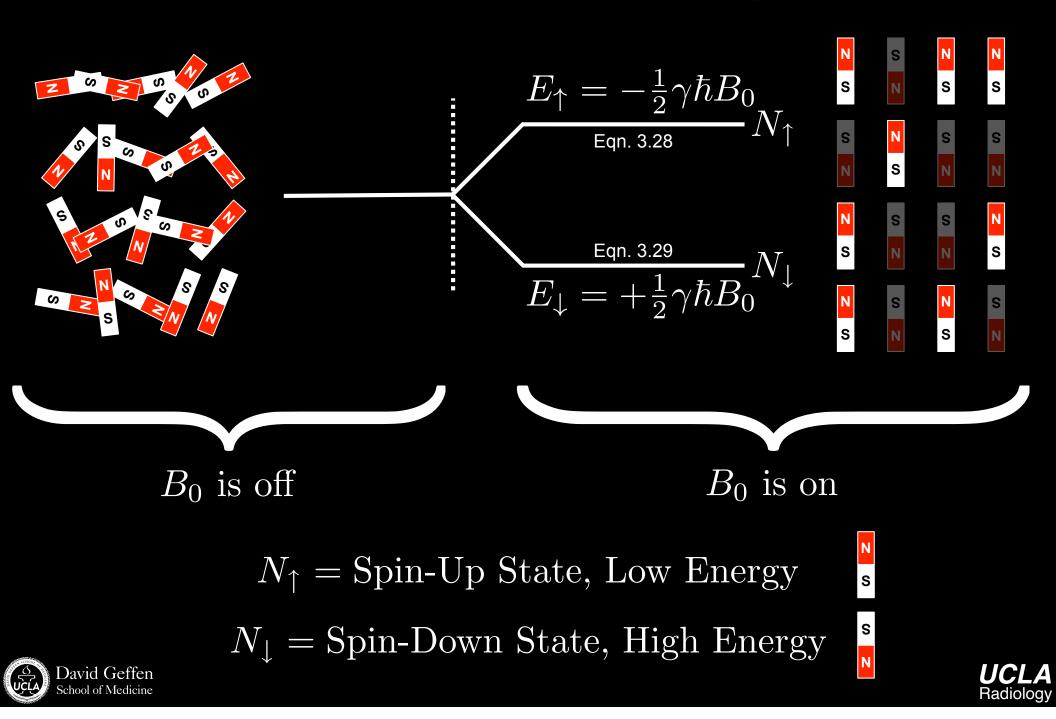
B₀ Field ON





B₀ polarizes the spins and generates bulk magnetization.


$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = M_z$$


B₀ Field ON

Only a very small number are spin-up relative to spin-down.

Zeeman Splitting

Zeeman Splitting

The spin population difference in the two spin states is related to their energy difference. According to the well-known Boltzmann relationship, we have

$$\frac{N_{\uparrow}}{N_{\downarrow}} = \exp\left(\frac{\Delta E}{KT_{\rm s}}\right) \tag{3.31}$$

where

 N_{\uparrow} :number of pointing-up spins N_{\downarrow} :number of pointing-down spins T_{s} :absolute temperature of the spin systemK:Boltzmann constant (1.38 × 10⁻²³ J/K)

After simplification...

$$N_{\uparrow}-N_{\downarrow}pprox N_{
m s}rac{\gamma\hbar B_{
m 0}}{2KT_{
m s}}$$

(3.35

Zeeman Splitting

$$\frac{N_{\uparrow} - N_{\downarrow}}{N_{total}} \approx \frac{\gamma h B_0}{2KT}$$

Eqn. 3.35

 $\gamma = 42.58 \times 10^6 \text{ Hz/T}$

- $h = 6.6 \times 10^{-34} \,\mathrm{J \cdot s}$ [Planck' Constant]
- T = 300 K (room temperature)
- $K = 1.38 \times 10^{-23} \text{ J/K} \text{ [Boltzmann Constant]}$

 $B_0 = 1.5 T$

UCLA

$$\frac{N_{\uparrow} - N_{\downarrow}}{N_{total}} \approx \frac{42.58 \times 10^{6} \cdot 6.6 \times 10^{-34} \cdot 1.5}{2 \cdot 1.38 \times 10^{-23} \cdot 300} \approx 4.5 \times 10^{-6}$$

$$\vec{M}_z^0 = |\vec{M}| = \frac{\gamma^2 h^2 B_0 N_s}{4KT_s} \qquad \text{Eqn. 3.39}$$

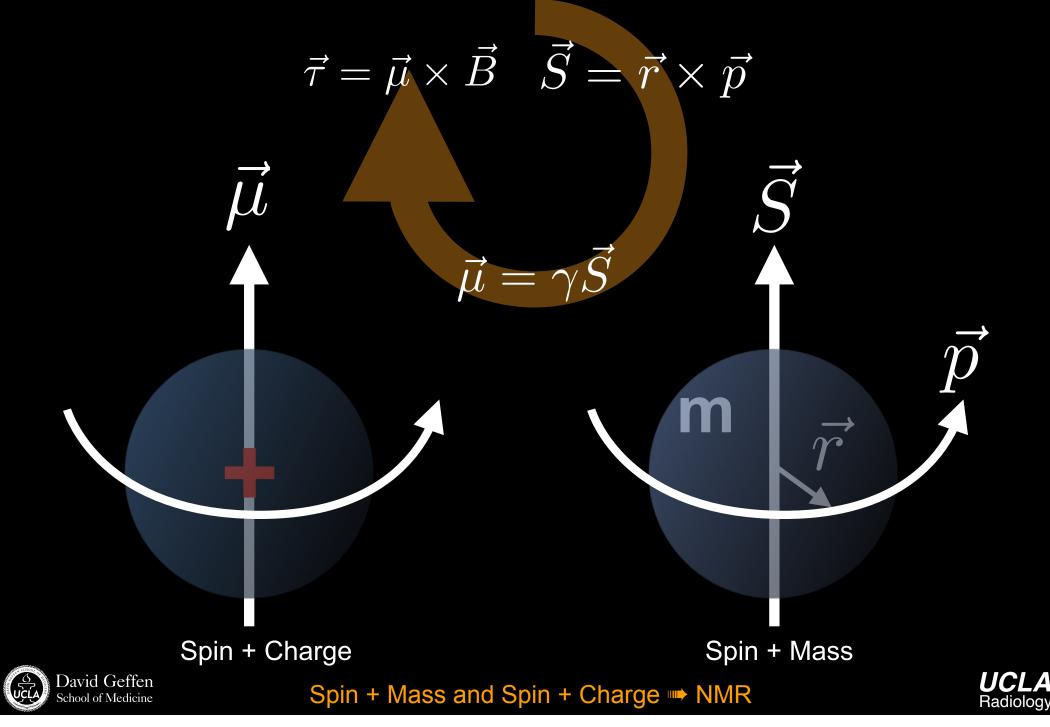
Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - ->1.5T
 - Z-oriented
- B₀ generates bulk magnetization (*M*)
 – More B₀, more

 $\vec{B}_0 = B_0 \vec{k}$ Eqn. 3.5

$$ec{M} = \sum_{n=1}^{N_{total}} ec{\mu_n}$$
 Eqn. 3.26

- B₀ forces \vec{M} to precess
 - Larmor Equation


Spin vs. Precession

- Spin
 - Intrinsic form of angular momentum
 - Quantum mechanical phenomena
 - No classical physics counterpart
 - Except by hand-waving analogy...
- Precession
 - Spin+Mass+Charge give rise to precession

Magnetic Moment & Spin Angular Momentum

To the board

Equation of Motion for the Bulk Magnetization

$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$

Equation of motion for an ensemble of spins (isochromats) [Classical Description]

What is a general solution?

The *equation of motion* describes the bulk magnetization "behavior" in the presence of a B-field.

To the board

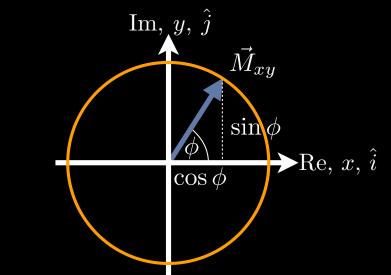
Rotations & Euler's Formula

Vectors

- A vector (\vec{v}) describes a physical quantity (e.g. bulk magnetization or velocity) at a point in space and time and has a magnitude (positive real number), a direction, and physical units.
- To define a vector we need a **basis**:

$$\hat{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• A 3D *vector* has components:


$$\vec{M} = M_x \hat{i} + M_y \hat{j} + M_z \hat{k}$$

2D Vectors - Euler's Formula

 Euler's formula provides a compact representation of a 2D vector using a complex exponential:

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$\begin{split} \vec{M}_{xy} &= M_x \hat{i} + M_y \hat{j} \\ &= M_x + i M_y \\ &= |\vec{M}_{xy}| \cos \phi \hat{i} + |\vec{M}_{xy}| \sin \phi \hat{j} \\ &= |\vec{M}_{xy}| \cos \phi + i |\vec{M}_{xy}| \sin \phi \\ &= |\vec{M}_{xy}| e^{i\phi} & 5\hat{j} \\ &= |M_{xy}| \cos \phi + i |M_{xy}| \sin \phi \\ &= |\vec{M}_{xy}| e^{i\phi} \end{split}$$

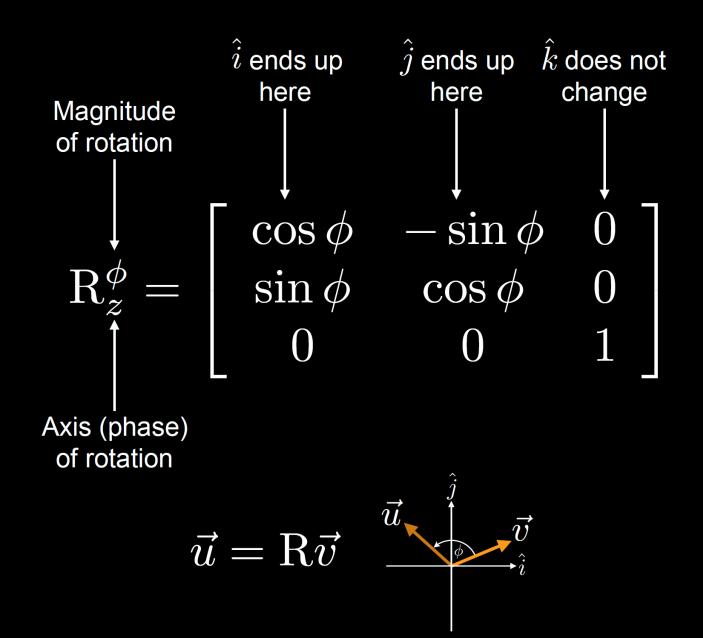
Vector components Complex components Trigonometric components Complex trigonometric components Euler's notation

Euler's formula is mathematically convenient. There is nothing explicitly *imaginary* about M_{xy}.

Rotations

- **Rotations** (R) are vector valued orthogonal transformations that preserve the magnitude of vectors and the angles between them.
- The simplest rotation matrix is the *identity* matrix:

$$R = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ therefore } \vec{v} = I\vec{v}$$


• More simply, R transforms (rotates) one vector to another:

$$\vec{u} = \mathbf{R}\vec{v} \quad \underbrace{\vec{u} \quad \hat{\vec{v}}}_{\hat{i}} \\ \vec{v} \quad \hat{\vec{v}}_{\hat{i}} \\ \vec{v} \quad$$

Rotations

 \sum_{ne}^{n} **Note**: Positive values of ϕ produce right-handed (CCW) rotations.

Matlab Demo

RIGHT-HANDED

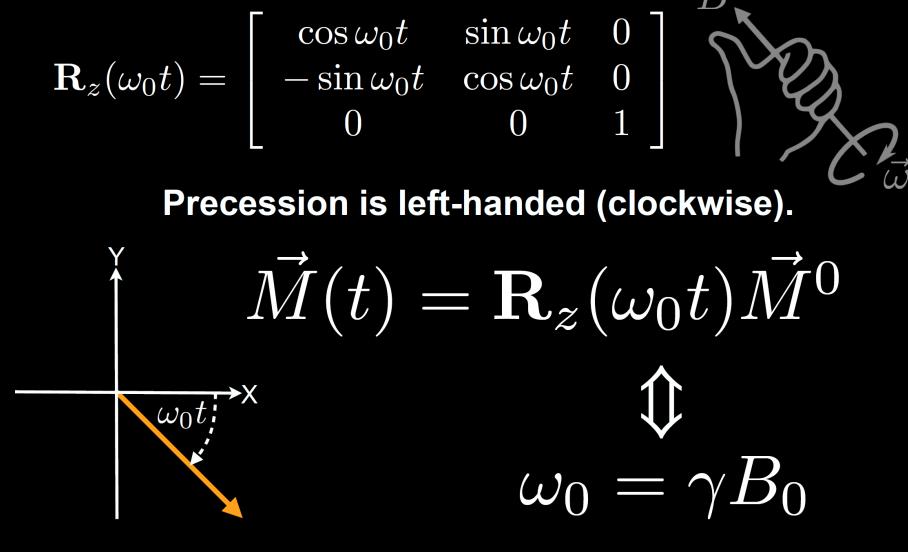
LEFT-HANDED

$$\mathbf{R}_{z}^{\phi} = \begin{bmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$R_Z(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

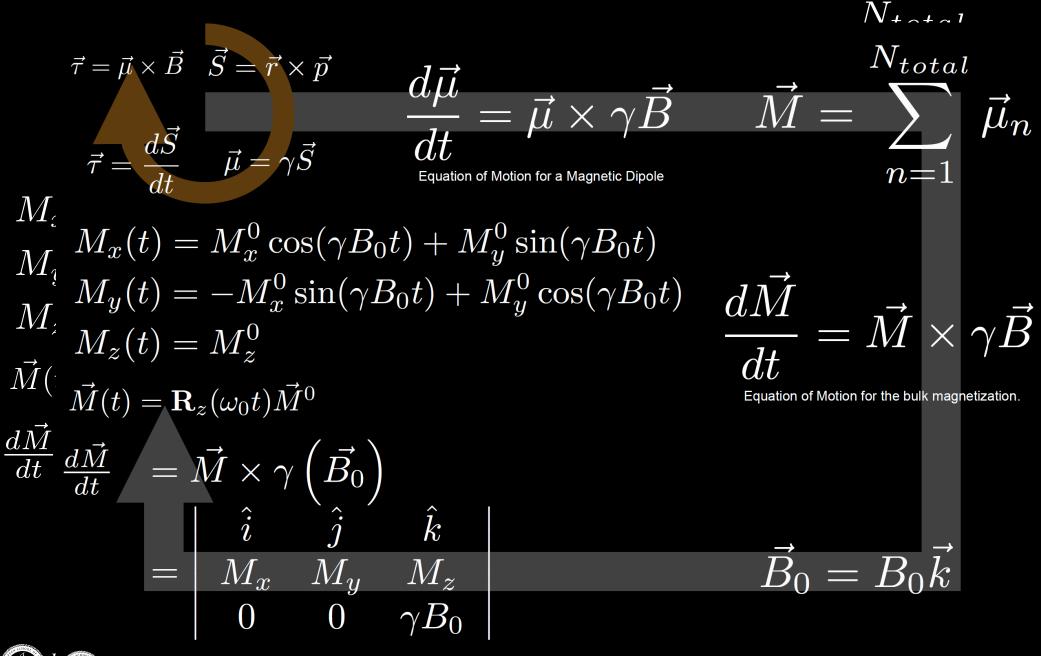
$$R_Y(\alpha) = \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$R_X(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$$


Free Precession In The Laboratory Frame Without Relaxation

 $= \vec{M} \times \gamma \left(\vec{B_0} \right)$ $rac{dec{M}}{dt}$ \hat{k} M_x M_y M_z γB_0

Free Precession In The Laboratory Frame Without Relaxation


Matlab Demo

```
%% Define some constants
gamma=42.57e6;
                       % Gyromagnetic ratio for 1H [MHz/T]
                       % B0 magnetic field strength [T]
B0=1.5;
dt=0.01e-8;
                       % Time step [s]
                       % Number of time points to simulate
nt=500:
t=(0:nt-1)*0.01e-8;
                       % Time vector [s]
M0=[sqrt(2)/2 0 sqrt(2)/2 1]'; % Initial condition (I.C.)
M=zeros(4,nt);
                                % Initialize the magnetization array
M(:,1)=M0;
                                % Define the first time point as the I.C.
% Simulate precession of the bulk magnetization vector
dB0=PAM B0 op(gamma,B0,dt);
                                % Calculate the homogenous coordinate transform
for n=2:nt
 M(:,n)=dB0*M(:,n-1);
end
%% Plot the results
figure; hold on;
  p(1)=plot(t,M(1,:));
                                % Plot the Mx component
  p(2)=plot(t,M(2,:));
                                % Plot the My component
  p(3)=plot(t,M(3,:));
                                % Plot the Mz component
                                % Increase plot thickness
    set(p,'LineWidth',3);
  ylabel('Magnetization [AU]');
  xlabel('Time [s]');
  legend('M_x','M_y','M_z');
  title('Bulk Magnetization Components as f(t)');
%% "Print" the figure
% PAM_fig_style(gcf,'rect');
% PAM_UCLA_Logo;
% print(gcf,'~/PAM_Lec02_B0_Precession.eps','-depsc2');
```


Summary

adiology

Next time...

MRI Systems II – B₁

Questions?

- Related reading materials
 - Liang/Lauterbur Chap 3.1
 - Nishimura Chap 4.1, 4.2

Kyung Sung, Ph.D. <u>KSung@mednet.ucla.edu</u> http://mrrl.ucla.edu/sunglab