Bloch Equations and Relaxation / MRI Signal Detection

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/19/2022

Course Overview

- Course website
- https://mrrl.ucla.edu/pages/m219
- Course schedule
- https://mrrl.ucla.edu/pages/m2192022
- Assignments
- Homework \#1 due on $1 / 26$ by 5 pm
- Homework \#2 will be out on 1/26

Course Overview

- Office Hours
- TA (Ran Yan) - Tuesday 4-5pm https://uclahs.zoom.us/j/96870184581? pwd=VkczLOlyRkxsQ3FHcnlxQ1M2U3hPdz09

Password: 900645

- Instructor (Kyung Sung) - Friday 2-3pm https://uclahs.zoom.us/j/94058312815? pwd=Tkl3ajhkamdGTnhqOVNnbk5RMnJGQT09

Password: 888767

Last Time...

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu} \times \vec{B} \quad \vec{S}=\vec{r} \times \vec{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& N_{\text {total }} \\
& \overrightarrow{\ln } \\
& M_{x}(t)=M_{x}^{0} \cos \left(\gamma B_{0} t\right)+M_{y}^{0} \sin \left(\gamma B_{0} t\right) \\
& M_{y}(t)=-M_{x}^{0} \sin \left(\gamma B_{0} t\right)+M_{y}^{0} \cos \left(\gamma B_{0} t\right) \\
& d \vec{M} \\
& M_{z}(t)=M_{z}^{0} \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma\left(\overrightarrow{B_{0}}\right) \\
& \vec{B}_{0}=B_{0} \vec{k}
\end{aligned}
$$

Free Precession w/o Relaxation

$\mathbf{R}_{z}\left(\omega_{0} t\right)=\left[\begin{array}{ccc}\cos \omega_{0} t & \sin \omega_{0} t & 0 \\ -\sin \omega_{0} t & \cos \omega_{0} t & 0 \\ 0 & 0 & 1\end{array}\right]$

Precession is left-handed (clockwise).

$$
\begin{aligned}
\vec{M}(t)=\mathbf{R}_{z}\left(\omega_{0} t\right) \vec{M}^{0} \\
\boldsymbol{\imath} \\
\omega_{0}=-\gamma B_{0}
\end{aligned}
$$

Basic RF Pulse $\vec{B}=\vec{B}_{0}+\vec{B}_{1}(t)$

$$
\vec{B}_{1}(t)=B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t+\theta\right) \hat{i}-\sin \left(\omega_{R F} t+\theta\right) \hat{j}\right]
$$

$\omega^{\omega} F$
 excitation carrier frequency

θ initial phase angle
B_{1} is perpendicular to B_{0}.

$$
\vec{B}_{0}=B_{0} \hat{k}
$$

Relationship Between Lab and Rotating Frames

$$
\begin{aligned}
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \\
& \text { Rotating Frame Definitions } \\
& \vec{M}_{r o t}=\left[\begin{array}{l}
M_{x^{\prime}} \\
M_{y^{\prime}} \\
M_{z^{\prime}}
\end{array}\right] \quad \vec{B}_{r o t}=\left[\begin{array}{c}
B_{x^{\prime}} \\
B_{y^{\prime}} \\
B_{z^{\prime}}
\end{array}\right] \\
& B_{z^{\prime}} \equiv B_{z} \\
& M_{z^{\prime}} \equiv M_{z} \\
& \vec{M}_{l a b}(t)=R_{\mathrm{Z}}\left(\omega_{R F} t\right) \cdot \vec{M}_{\text {rot }}(t) \\
& \vec{B}_{l a b}(t)=R_{Z}\left(\omega_{R F} t\right) \cdot \vec{B}_{r o t}(t) \\
& \text { Bulk magnetization } \\
& \text { components in the } \\
& \text { rotating frame. } \\
& \text { Applied B-field } \\
& \text { components in the } \\
& \text { rotating frame. } \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \quad \longrightarrow \frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma \vec{B}_{e f f}
\end{aligned}
$$

Bloch Equation (Rotating Frame)

Equation of motion for an ensemble of spins (isochromats).
[Laboratory Frame]

$\frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma\left(\frac{\vec{\omega}_{r o t}}{\gamma}+\vec{B}_{r o t}\right) \begin{gathered}\begin{array}{c}\text { Equation of motion for an } \\ \text { ensemble of spins (isochromats) } \\ \text { [Rotating Frame] }\end{array}\end{gathered}$

$$
\vec{B}_{e f f} \equiv \frac{\vec{\omega}_{r o t}}{\gamma}+\vec{B}_{r o t} \quad \vec{\omega}_{r o t}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right)
$$

Effective B-field that M experiences in the rotating frame.
$\varlimsup_{\text {Applied B- }}$
Fictitious field that demodulates
the apparent effect of $B 0$.

Bloch Equation (Rotating Frame)

$$
\begin{aligned}
& \vec{B}(t)=B_{0} \hat{k}+B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t+\theta\right) \hat{i}-\sin \left(\omega_{R F} t+\theta\right) \hat{j}\right] \\
& \vec{B}_{l a b}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \cos \left(\omega_{R F} t+\theta\right) \\
-B_{1}^{e}(t) \sin \left(\omega_{R F}+\theta\right) \\
B_{0}
\end{array}\right) \quad \vec{B}_{\text {rot }}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \cos \theta \\
-B_{1}^{e}(t) \sin \theta \\
B_{0}
\end{array}\right) \\
& \vec{B}_{e f f} \equiv \frac{\vec{\omega}_{\text {rot }}}{\gamma}+\vec{B}_{\text {rot }} \quad \vec{\omega}_{\text {rot }}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right) \\
& \text { Effective B-field that } \\
& M \text { experiences in the } \\
& \text { rotating frame. } \\
& \text { Applied B-field in the rotating frame. } \\
& \text { Fictitious field that demodulates } \\
& \text { the apparent effect of } B \text {. }
\end{aligned}
$$

Bloch Equation (Rotating Frame)

$$
\vec{B}_{e f f} \equiv \frac{\vec{\omega}_{\text {rot }}}{\gamma}+\vec{B}_{r o t}
$$

Assume no RF phase ($\theta=0$)

$$
\begin{gathered}
\vec{B}_{r o t}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \\
0 \\
B_{0}
\end{array}\right) \quad \vec{\omega}_{r o t}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right) \\
\vec{B}_{e f f}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \\
0 \\
B_{0} \\
\omega_{R F}
\end{array}\right)
\end{gathered}
$$

Off-Resonance Excitation

$$
\begin{aligned}
& \frac{\partial \vec{M}_{r o t}}{\partial t}=\vec{M}_{\text {rot }} \times \gamma \vec{B}_{e f f} \\
& \vec{B}_{\text {eff }}=\left(B_{0}-\frac{\omega_{\mathrm{rf}}}{\gamma}\right) \vec{k}^{\prime}+B_{1}^{e}(t) \overrightarrow{i^{\prime}} \\
& \quad=\frac{\Delta \omega_{0}}{\gamma} \vec{k}^{\prime}+B_{1}^{e}(t) \overrightarrow{i^{\prime}} \\
& \Delta \omega_{0}=\omega_{0}-\omega_{\mathrm{rf}} \\
& \text { No closed-form solution for } \\
& \begin{array}{l}
\text { generic } \mathrm{B} 1
\end{array} \\
& \text { Ois) }
\end{aligned}
$$

Sources of Off-Resonance

- B0 Field Inhomogeneity
- Imperfect shimming
- Magnetic susceptibility
- metallic objects
- diamagnetic tissue
- paramagnetic tissue
- air/tissue interface
- Eddy Currents
- Chemical Shift

Magnetic Susceptibility

Magnetic field (B_{o})

Diamagnetic

$\chi<0$

Para/Ferromagnetic

$\chi>0$

Magnetic Susceptibility

| Magnetic Property | Direction of
 Polarization (I)
 Relative to
 External Field | Relative
 Magnetic
 Susceptibility
 (X) in ppm | Typical Materials |
| :--- | :---: | :---: | :---: | :--- |
| Diamagnetism | Opposite | -10 | Water, fat, calcium,
 most biologic tissues |
| Paramagnetism | Same | +1 | Molecular O_{2}, simple
 salts and chelates of
 metals (Gd, Fe, Mn, Cu),
 organic free radicals |
| Superparamagnetism | Same | +5000 | Ferritin, hemosiderin,
 SPIO contrast agents |
| Ferromagnetism | Same | $>10,000$ | Iron, steel |

Off-Resonance Excitation

$$
\begin{aligned}
\vec{B}_{\mathrm{eff}} & =\left(B_{0}-\frac{\omega_{\mathrm{ff}}}{\gamma}\right) \vec{k}^{\prime}+B_{1}^{e}(t) \vec{z}^{\prime} \\
& =\frac{\Delta \omega_{0}}{\gamma} \vec{k}^{\prime}+B_{1}^{c}(t) \vec{r}^{\prime}
\end{aligned}
$$

Important Observations
For non-constant B1, the actual axis of rotation changes!

M will not rotate to the target location due to off-resonance
Effective flip angle and signal phase vary depending on offresonance $\Delta \omega_{0}$

Frequency Selectivity of RF Pulses

Matlab Demo

Mathematics of Hard RF Pulses

Rules for RF Pulses

- RF fields induce left-hand rotations
- Phase of 0° is about the x-axis
- Phase of 90° is about the y-axis

Flip Angle - α

- "Amount of rotation of the bulk magnetization vector produced by an RF pulse, with respect to the direction of the static magnetic field."
- Liang \& Lauterbur, p. 374

Rules for RF Pulses

\(\begin{cases}\alpha \& \rightarrow Flip Angle
\theta \rightarrow Phase\end{cases}\)

How to determine α ?

$$
\alpha=\gamma \int_{0}^{\tau_{p}} B_{1}^{e}(t) d t
$$

Rules: 1) Specify α
2) Use $\mathrm{B}_{1, \max }$ if we can
3) Shortest duration pulse

How to determine α ?

$$
\begin{gathered}
\alpha=\gamma \int_{0}^{\tau p} B_{1}^{e}(t) d t \\
\tau=\frac{\alpha}{\gamma B_{1, \max }}=\frac{\pi / 2}{2 \pi \cdot 42.57 H z / \mu T \cdot 60 \mu T}=0.098 \mathrm{~ms}
\end{gathered}
$$

Change of Basis (θ)

$$
\mathbf{R}_{Z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation by Alpha

$$
\mathbf{R}_{X}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right]
$$

Change of Basis $(-\theta)$

$$
\mathbf{R}_{Z}(-\theta)=\left[\begin{array}{ccc}
\cos (-\theta) & \sin (-\theta) & 0 \\
-\sin (-\theta) & \cos (-\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

RF Pulse Operator

$$
\begin{aligned}
\mathbf{R}_{\theta}^{\alpha} & =\mathbf{R}_{Z}(-\theta) \mathbf{R}_{X}(\alpha) \mathbf{R}_{Z}(\theta) \\
& =\left[\begin{array}{ccc}
\mathrm{c}^{2} \theta+\mathrm{s}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & -\mathrm{s} \theta \mathrm{~s} \alpha \\
\mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & \mathrm{~s}^{2} \theta+\mathrm{c}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \alpha \\
\mathrm{~s} \theta \mathrm{~s} \alpha & -\mathrm{c} \theta \mathrm{~s} \alpha & \mathrm{c} \alpha
\end{array}\right]
\end{aligned}
$$

RF Pulse Operator

$\vec{M}\left(0_{+}\right)=R F_{\theta}^{\alpha} \vec{M}\left(0_{-}\right)$

Hard RF Pulses

$$
\mathbf{R}_{0^{\circ}}^{90^{\circ}} 9 \mathbf{R}_{90^{\circ}}^{90^{\circ}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \quad \mathbf{R}_{90^{\circ}}^{90^{\circ}}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$\mathrm{T}_{1} \& \mathrm{~T}_{2}$ Relaxation

Relaxation

- Magnetization returns exponentially to equilibrium:
- Longitudinal recovery time constant is T1
- Transverse decay time constant is T2
- Relaxation and precession are independent

T1 Relaxation

- Longitudinal or spin-lattice relaxation
- Typically, (10s ms) < T1 < (100s ms)
- T1 is long for
- Small molecules (water)
- Large molecules (proteins)
- T1 is short for
- Fats and intermediate-sized molecules
- T1 increases with increasing B0
- T1 decreases with contrast agents

Short $\mathrm{T}_{1} \mathrm{~s}$ are bright on T_{1}-weighted image

T1 Relaxation

Free Precession in the Lab or Rotating Frame with Relaxation

T1 Contrast

T2 Relaxation

- Transverse or spin-spin relaxation
- Molecular interaction causes spin dephasing
- Typically, T2 < (10s ms)
- Increasing molecular size, decrease T2
- Fat has a short T2
- Increasing molecular mobility, increases T2
- Liquids (CSF, edema) have long T2s
- Increasing molecular interactions, decreases T2
- Solids have short T2s
- T2 relatively independent of B0

Long T_{2} is bright on T_{2} weighted image

T2 Relaxation

T2 Contrast

T1 and T_{2} Values @ 1.5T

Tissue	$\mathbf{T}_{1}[\mathbf{m s}]$	$\mathbf{T}_{\mathbf{2}}$ [ms]
gray matter	925	100
white matter	790	92
muscle	875	47
fat	260	85
kidney	650	58
liver	500	43
CSF	2400	180

Each tissue has "unique" relaxation properties, which enables "soft tissue contrast".

$$
\text { F/G. } 2
$$

Bloch Equations with Relaxation

$$
\frac{d \overrightarrow{\mathrm{M}}}{d t}=\overrightarrow{\mathrm{M}} \times \gamma \overrightarrow{\mathrm{B}}-\frac{M_{x} \hat{\mathrm{i}}+M_{y} \hat{\mathrm{j}}}{T_{2}}-\frac{\left(M_{z}-M_{0}\right) \hat{\mathrm{k}}}{T_{1}}
$$

- Differential Equation
- Ordinary, Coupled, Non-linear
- No analytic solution, in general.
- Analytic solutions for simple cases.
- Numerical solutions for all cases.
- Phenomenological
- Exponential behavior is an approximation.

Bloch Equations - Lab Frame

$$
\frac{d \overrightarrow{\mathrm{M}}}{d t}=\underbrace{\overrightarrow{\mathrm{M}} \times \gamma \overrightarrow{\mathrm{B}}}_{\text {Precession }}-\underbrace{\frac{T_{x} \hat{\mathrm{i}}+M_{y} \hat{\mathrm{j}}}{T_{2}}}_{\begin{array}{c}
\text { Transverse } \\
\text { Relaxation }
\end{array}}-\frac{\left(M_{z}-M_{0}\right) \hat{\mathrm{k}}}{T_{1}}
$$

- Precession
- Magnitude of M unchanged
- Phase (rotation) of M changes due to B
- Relaxation
- T_{1} changes are slow $\mathrm{O}(100 \mathrm{~ms})$
- T_{2} changes are fast $O(10 \mathrm{~ms})$
- Magnitude of M can be ZERO
- Diffusion
- Spins are thermodynamically driven to exchange positions.
- Bloch-Torrey Equations

Excitation and Relaxation

Bloch Equations - Rotating Frame

$$
\begin{aligned}
& \frac{\partial \vec{M}_{r o t}}{\partial t}=\gamma \underbrace{\gamma \vec{M}_{r o t} \times \vec{B}_{e f f}-\underbrace{\frac{M_{x^{\prime}} \overrightarrow{\dot{l}^{\prime}}+M_{y^{\prime}} \vec{j}^{\prime}}{T_{2}}}_{\substack{\text { Transverse } \\
\text { Relaxation }}}-\frac{\left(M_{z^{\prime}}-M_{0}\right) \overrightarrow{k^{\prime}}}{T_{1}}}_{\text {"Precession" }} \\
& \text { Effective B-field that } \\
& \text { M experiences in the } \\
& \text { rotating frame }
\end{aligned}
$$

Free Precession in the Rotating Frame with Relaxation

Free Precession in the Rotating Frame

$$
\begin{gathered}
\frac{\partial \vec{M}_{r o t}}{\partial t}=\gamma \vec{M}_{r o t} \times \vec{B}_{e f f}-\frac{M_{x^{\prime}} \vec{i}^{\prime}+M_{y^{\prime}} \vec{j}^{\prime}}{T_{2}}-\frac{\left(M_{z^{\prime}}-M_{0}\right) \vec{k}^{\prime}}{T_{1}} \\
\vec{B}_{e f f} \triangleq \frac{\vec{\omega}}{\gamma}+\vec{B}_{r o t} \\
\vec{\omega}_{r o t}=\vec{\omega}=-\gamma \mathrm{B}_{0} \hat{k} \quad \overrightarrow{\mathrm{~B}}_{r o t}=\mathrm{B}_{0} \hat{k} \\
\vec{B}_{e f f}=\overrightarrow{0} \\
\frac{\partial \vec{M}_{r o t}}{\partial t}=-\frac{M_{x^{\prime}} \vec{i}^{\prime}+M_{y^{\prime}} \vec{j}^{\prime}}{T_{2}}-\frac{\left(M_{z^{\prime}}-M_{0}\right) \vec{k}^{\prime}}{T_{1}}
\end{gathered}
$$

Free Precession in the Rotating Frame

$$
\frac{\partial \vec{M}_{r o t}}{\partial t}=-\underbrace{\frac{M_{x^{\prime}} \vec{i}^{\prime}+M_{y^{\prime}} \vec{j}^{\prime}}{T_{2}}}_{\substack{\text { Transverse } \\
\text { Relaxation }}}-\underbrace{\frac{\left(M_{z^{\prime}}-M_{0}\right) \vec{k}^{\prime}}{T_{1}}}_{\begin{array}{c}
\text { Longitudinal } \\
\text { Relaxation }
\end{array}}
$$

- No precession
- T_{1} and T_{2} Relaxation
- Drop the diffusion term
- System or first order, linear, separable ODEs!

Free Precession in the Rotating Frame

$$
\frac{\partial \vec{M}_{r o t}}{\partial t}=-\underbrace{\frac{M_{x^{\prime}} \vec{i}^{\prime}+M_{y^{\prime}} \vec{j}^{\prime}}{T_{2}}}_{\begin{array}{c}
\text { Transverse } \\
\text { Relaxation }
\end{array}}-\underbrace{\frac{\left(M_{z^{\prime}}-M_{0}\right) \vec{k}^{\prime}}{T_{1}}}_{\begin{array}{c}
\text { Longitudinal } \\
\text { Relaxation }
\end{array}}
$$

Solution:

$$
\begin{gathered}
M_{z^{\prime}}(t)=M_{z}^{0} e^{-t / T_{1}}+M_{0}\left(1-e^{-t / T_{1}}\right) \\
M_{x^{\prime} y^{\prime}}(t)=M_{x^{\prime} y^{\prime}}\left(0_{+}\right) e^{-t / T_{2}}
\end{gathered}
$$

Forced Precession in the Rotating Frame with Relaxation

Forced Precession in the Rot. Frame with Relaxation

$$
\begin{gathered}
\frac{\partial \vec{M}_{\text {rot }}}{\partial t}=\gamma \vec{M}_{\text {rot }} \times \vec{B}_{\text {eff }}-\frac{M_{x^{\prime}} \vec{i}^{\prime}+M_{y^{\prime} j^{\prime}}^{\prime}}{T_{2}}-\frac{\left(M_{z^{\prime}}-M_{0}\right) \vec{k}^{\prime}}{T_{1}} \\
\vec{B}_{e f f} \triangleq \frac{\vec{\omega}}{\gamma}+\vec{B}_{r o t} \\
\vec{\omega}_{\text {rot }}=\vec{\omega}=-\gamma \mathrm{B}_{0} \hat{k} \quad \vec{B}_{r o t}=B_{0} \hat{k}+B_{1}^{e}(t) \hat{i}^{\prime} \\
\vec{B}_{e f f}=B_{1}^{e}(t) \hat{i}^{\prime}
\end{gathered}
$$

Forced Precession in the Rot. Frame with Relaxation

$$
\begin{gathered}
\frac{\partial \vec{M}_{r o t}}{\partial t}=\gamma \vec{M}_{r o t} \times \vec{B}_{e f f}-\frac{M_{x^{\prime}} \overrightarrow{i^{\prime}}+M_{y^{\prime} \vec{j}^{\prime}}}{T_{2}}-\frac{\left(M_{z^{\prime}}-M_{0}\right) \vec{k}^{\prime}}{T_{1}} \\
\vec{B}_{e f f}=B_{1}^{e}(t) \hat{i}^{\prime}
\end{gathered}
$$

- B1 induced nutation
- T_{1} and T_{2} Relaxation
- Drop the diffusion term
- System or first order, linear, coupled PDEs!
- When does this equation apply?

Forced Precession in the Rotating

Frame with Relaxation

- RF pulses are short - 100 $\mu \mathrm{s}$ to 5 ms
- Relaxation time constants are long
$-\mathrm{T}_{1} \mathrm{O}(100 \mathrm{~s}) \mathrm{ms}$
- $\mathrm{T}_{2} \mathrm{O}(10 \mathrm{~s}) \mathrm{ms}$
- Complicated Coupling
- Best suited for simulation

Free? Forced? Relaxation?

- We've considered all combinations of:
- Free and forced precession
- With and without relaxation
- Laboratory and rotating frames
- Which one's concern M219 the most?
- Free precession in the rotating frame with relaxation
- Forced precession in the rotating frame without relaxation.
- We can, in fact, simulate all of them...

Spin Gymnastics - Lab Frame

Spin Gymnastics - Rotating Frame

$$
\begin{aligned}
& M_{Z}(t)=M_{Z}^{0} e^{-\frac{t}{T_{1}}}+M_{0}\left(1-e^{-\frac{t}{T_{1}}}\right) \\
& M_{x y}(t)=M_{x y}^{0} e^{-t / T_{2}}
\end{aligned}
$$

$90^{\circ} \mathrm{RF}$
135° RF
$180^{\circ} \mathrm{RF}$

How do we measure $M_{x y}$?

Faraday's Law of Induction

Faraday's Law of Induction

David Geffen
School of Nedience The trick is to encode spatial information and image contrast in the echo.

Signals in MRI

Signals in MRI

Basic Detection Principles

Magnetic Flux Through The Coil - Reciprocity

$$
\Phi(t)=\int_{\substack{\text { Object } \\ \text { Magnetic } \\ \text { Flux }}} \vec{B}_{r}(\vec{r}) \cdot \vec{M}(\vec{r}, t) d \vec{r} \text { Eqn. } 3.126
$$

What happens if the coil has poor sensitivity?
What happens if the coil's sensitivity is perpendicular to the bulk magnetization? How would that happen?

Basic Detection Principles

We get here

$$
S(t)=\int_{\text {object }} M_{x y}(r, 0) e^{-i \gamma \Delta B(r) t} d r
$$

From Here

$V(t)=-\frac{\partial \Phi(t)}{\partial t}=-\frac{\partial}{\partial t} \int_{\text {object }} \vec{B}(\vec{r}) \cdot \vec{M}(\vec{r}, t) d \vec{r}$
with $\mathbf{2 5}$ pages of Math!

Basic Detection Principles

$$
S(t)=\int_{\text {object }} M_{x y}(r, 0) e^{-i \gamma \Delta B(r) t} d r
$$

Observations

Detected signal is the vector sum of all transverse magnetizations in the "rotating frame" within the imaging volume.

The Larmor frequency precession (Lab frame rotation) is necessary for detection, although only the baseband signal matters for imaging

Basic Detection Examples

TO THE BOARD

1.
2.
3.

Signal of a voxel (T2* decay) Signal of a 1D homogeneous object Signal of a 1D inhomogeneous object

Questions?

- Related reading materials
- Liang/Lauterbur - Chap 3.3
- Nishimura - Chap 5.2, 5.3

Kyung Sung, Ph.D.
KSung@mednet.ucla.edu
http://mrrl.ucla.edu/sunglab

