The Fourier Transform
and its Applications

T'he Fourier lranstorm:

S) — /_OO f(m)e—iQﬂ'sxdx

The Inverse Fourier Transform:

F@) = /_ O; F(s)ei2ms s

Product: h(z)o(z) = h(0)d(x)
§2(x) - no meaning

0(x) x d(x) = 6(x)
Fourier Transform of 6(x): F{é(x)} =1

Symmetry Properties:
If g(x) is real valued, then G(s) is Hermitian:

G(=s) = G"(s)
If g(x) is imaginary valued, then G(s) is Anti-Hermitian:

G(=s) = —G"(s)

Derivatives:
- J%
- (@)« (@) = /@)
- xd(x) =0
— xd' (x) = =d(x)

Meaning of d[h(z)]:
Z ZL' — 11?1
[

The Shah Function: M (x)

In general: -
e Sampling: W(z)g(x) =3 2,= o 9(n)é(z = n)
g(z) = e(z) +o(z) = er(x)+ier(zr) + or(x) + tor(x) o oo
G(s) = E(s) + O(s) = En(s) + iEx(s) + i01(s) + On(s) e Replication: M(z) « g(x) = > oo 9(x — 1)
e Fourier Transform: F{ll(x)} = W(s)
Convolution:
L e e Scaling: M(az) =) d(ax —n) = |a| Yoz —12)
g+ h)(=) = /700 9(©)h(e = E)de Even and Odd Impulse Pairs
Autocorrelation: Let g(z) be a function satisfying Even: I(z) = %5( ) 15( %)
1= l9(x)|* dz < oo (finite energy) then ) )
Odd: I(z) = 30(z+ 3) — 26(z — 3)

L@@ & [ T GO0 (€ — x)de

= g(x)xg"(-x)

Cross correlation: Let g(x) and h(x) be functions with

finite energy. Then

e 2 [ T g Oh(E + a)de

[ T (e - )h(e)de
= (b xg) ()

The Delta Function: §(x)

Fourier Transforms:

F{I(z)} = cosms
F{lj(z)} = isinms

Fourier Transform Theorems

e Scaling: d(ax) = ﬁé(m)
e Sifting: 2 0(x —a)f(z)dz = f(a)
J7o 8(2) f (2 + a)dz = f(a)

e Convolution:

e Linearity: Flaf(z)+ Bg(x)} = aF(s) + BG(s)

e Similarity: Flglaz)} = LG(2)

e Shift: Flg(z —a)} = e 2m5G(s)

Flglaw —b)} = fre 2™ G(2)

e Rayleigh’s: 75 lg(@))Pde = [0 |G(s)|?ds

e Power: 55 f@)gt(x)de = [7_ F(s)G*(s)ds
e Modulation:

Flg(z)cos(2msox)} = $[G(s — s0) + G(s + s0)]

e Convolution: F{f+g} =F(s)G(s)
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Autocorrelation: Flg* * g} = |G(s)|?

Cross Correlation: Flg** f} =G*(s)F(s)
Derivative:
- F{g'(z)} = i2wsG(s)
- Flg ()} = (i2ms)"G(s)
- Fla"g(@)} = (5:)"G(s)

Fourier Integral: If g(z) is of bounded variation and
is absolutely integrable, then

FHF (] = lolh) + o]

Moments:
f(z)dx = F(0)
[w xf(z)dr = i '(0)

Miscellaneous:
If F{g(z)} = G(s) then F{G(z)} = g(—s)
and Flg* (@)} = G"(=s)

]-'{/; g(&)de } _ 1G(0)3(s) + G

Function Widths

Equivalent Width

A Joo fx)da _ F(0)

S T T o)

_ FO 1

[ F(s)ds Wg

Autocorrelation Width
A fix;o f*xfdx
i e T

Fo)P 1

[ P (s)2ds — Wipp

e Standard Deviation of Instantaneous Power: Az

oy 2 LTV @Pde lf”ooxu(x)?dzr
o lf@)Pde 71 f(@)2de

(g 2 LxIFOIPds [fi’;s|F<s>2dsr
S [F(s)Pds | 5, F(s)Pds

— Uncertainty Relation: (Az)(As) > ﬁ

Central Limit Theorem

Given a function f(x), if F(s) has a single absolute
maximum at s = 0; and, for sufficiently small |s|,

F(s) ~ a—cs®> where 0 < a < oo and 0 < ¢ < o0,
then:
iy VRSB [ma _zage
n— oo an 2
and
n+%
*1 a T _ma,2
[f@)]" = ——y /e =
n2 ¢

Linear Systems

For a linear system w(t) = S[v(t)] with response h(t,7)
to a unit impulse at time 7:

Slavi(t) + Bua(t)] = aS[v1(t)] + BS[va(t)]

w(t) :/ v(T)h(t, T)dT
If such a system is time-invariant, then:

w(t—7) = Sv(t —71)]

/.

= (wxh)()

and

w(t) = o(T)h(t — T)dT

The eigenfunctions
are e1,27'|'f()t

the response to an input of v(t) = e
w(t) = H(fo)e?mfot,

of any linear time-invariant system
, since for a system with transfer function H(s),
@2mfot is given by:

Sampling Theory

§a) = W($)gx)
= X Z g(nX)é(x —nX)

n=—oo
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Whittaker-Shannon-Kotelnikov Theorem: For a bandlim-
ited function g(x) with cutoff frequencies +s., and with
no discrete sinusoidal components at frequency s,

oo

Z g(2n )sinc[2s.(x — " )]

s 2s
n=-—oo ¢ ¢

g(x) =

Fourier Tranforms for Periodic Functions

For a function p(z) with period L, let f(x) = p(x) 1 (F).
Then

p(x) > e —nL)

Pis) = 7 n_Zm (s— 1)

The complex fourier series representation:
o0
Z Cnei27r%w
n=-—oo

where

Cnh =

= f/ ) p(z)e "L dy
—L/2

The Discrete Fourier Transform

Let g(z) be a physical process, and let f(z) = g(z) for 0 <
x < L, f(x) = 0 otherwise. Suppose f(x) is approximately
bandlimited to +B Hz, so we sample f(z) every 1/2B
seconds, obtaining N = |2BL] samples.
The Discrete Fourier Transform:

N-1

Fn = Z Jne~
n=0

The Inverse Discrete Fourier Transform:

i 2mtmn

form=0,....N -1

f ZLNZ_lF T forn=0 N -1
n Nm:() m ey
Convolution:
hn :Ziv;olfkgnfk forn=0,...,N—1

where f, g are periodic
Serial Product:
hn Zk; =0 fk:gn k 2N -2

where f, g are not periodic

forn=0,...,

DFT Theorems

Linearity: DFT{afn + Bgn} = aFy + BGp,

Shift:

DFT{fn_r} = Fpne "+ (f periodic)
SN g = LN RLG
=DFT{Y 1"y frgnk}

The Hilbert Transform

e Parseval’s:

Convolution:

Fme

The Hilbert Transform of f(x):
Fri( / 5 - d§ (CPV)

The Inverse Hilbert Transform:

L [ Fi(§)
=—= d CPV
f@) == [ e+ foo (cPV)
e Impulse response: —#
e Transfer function: i sgn(s)

Causal functions: A causal function g(x) has Fourier
Transform G(s) = R(s) + il(s), where I(s) =
H{R(s)}-

Analytic signals: The analytic signal representation
of a real-valued function v(t) is given by:

>

FH2H(s)V (s)}
= v(t) —ivg(t)

z(t)

= A(t) cos[2m fot + ¢(1)]
() ~ A(t)ei[QTrfOt+¢(t)]

Narrow Band Signals: g¢(t)

— Analytic approx:

— Envelope: A(t) =| z(¢) |
— Phase: arglg(t)] = 27rfot —|— o(t)
— Instantaneous freq: fi=fo+ 271' dt (t)

The Two-Dimensional Fourier Transform

Flors)= [ [ floye e tomizay
The Inverse Two-Dimensional Fourier Transform:

00 poo .
f(x7y) = / / F(SI, Sy)ezZTr(smac-&-syy)dsmdsy
—00 J —o0

The Hankel Transform (zero order):

F(q) =27 /0OO f(r)Jo(2mrq)rdr
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The Inverse Hankel Transform (zero order):

f(r) = 2n / " P(g)Jo(2rra)adq

Projection-Slice Theorem: The 1-D Fourier transform
Py(s) of any projection py(z’) through g(z,y) is identi-
cal with the 2-D transform G(s;, s,) of g(z, y), evaluated
along a slice through the origin in the 2-D frequency do-
main, the slice being at angle 6 to the x-axis. i.e.:

Py(s) = G(scosb, ssin)
Reconstruction by Convolution and Backprojection:
soy) = [ F M| Plo)as
0

= / fo(x cosO + ysin6)do
0

where fo(z') = (2s%sinc2s.2’ — s?sinc?s.a’) * po(z’)

compiled by John Jackson



