RF Pulse Design RF Pulses / Adiabatic Pulses

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 4/12/2022

Class Business

Homework 1 is due on 4/22 (Friday)

Outline

- Review of RF pulses
- Adiabatic passage principle
- Adiabatic inversion

Review of RF Pulses

Notation and Conventions

$$\vec{B} = B_0 \hat{k} + B_1(t) [\cos \omega t \hat{i} - \sin \omega t \hat{j}]$$

- ω = carrier frequency
- ω_0 = resonant frequency
- B₁(t) = complex valued envelop function

RF Pulse - Excitation

$$\vec{B} = B_0 \hat{k} + B_1(t) [\cos \omega t \hat{i} - \sin \omega t \hat{j}]$$

$$B_1(t) \cdot [\cos(\omega t)\hat{i} - \sin(\omega t)\hat{j}]$$

Lab vs. Rotating Frame

- The rotating frame simplifies the mathematics and permits more intuitive understanding.

Laboratory Frame

Rotating Frame

Rotating Frame

Rotating Frame Definitions

$$\vec{M}_{rot} \equiv \left[egin{array}{c} M_{x'} \\ M_{y'} \\ M_{z'} \end{array}
ight] \qquad \vec{B}_{rot} \equiv \left[egin{array}{c} B_{x'} \\ B_{y'} \\ B_{z'} \end{array}
ight] \qquad B_{z'} \equiv B_z \\ M_{z'} \equiv M_z$$

$$\vec{M}_{lab}(t) = R_Z(w_0 t) \cdot \vec{M}_{rot}(t)$$
$$\vec{B}_{lab}(t) = R_Z(w_0 t) \cdot \vec{B}_{rot}(t)$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \qquad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

Bloch Equation (Rotating Frame)

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

where
$$\vec{B}_{eff} = \vec{B}_{rot} + (\vec{w}_{rot})$$
 fictitious field

$$\vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega \end{pmatrix}$$

Bloch Equation (Rotating Frame)

$$\vec{B}_{eff} = \vec{B}_{rot} + \frac{\vec{w}_{rot}}{\gamma}$$

$$\vec{B}_{lab} = \begin{pmatrix} B_1(t)\cos\omega_0 t \\ B_1(t)\sin\omega_0 t \\ B_0 \end{pmatrix} \qquad \vec{B}_{rot} = \begin{pmatrix} B_1(t) \\ B_1(t) \\ B_0 \end{pmatrix}$$

Assume real-valued B₁(t)

$$\vec{B}_{rot} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 \end{pmatrix} \qquad \vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} \end{pmatrix}$$

To the board ...

Bloch Equation with Gradient

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

$$\vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} \end{pmatrix} \longrightarrow \vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} + G_z z \end{pmatrix}$$

Bloch Equation (at on-resonance)

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

where
$$ec{B}_{eff}=\left(egin{array}{c} B_{1}(t) & 0 \ B_{0} & rac{\omega}{\gamma}+G_{z}z \end{array}
ight)$$

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega(z) & 0 \\ -\omega(z) & 0 & \omega_1(t) \\ 0 & -\omega_1(t) & 0 \end{pmatrix} \vec{M}$$

$$\omega(z) = \gamma G_z z$$
 $\omega_1(t) = \gamma B_1(t)$

To the board ...

B1 Variations

- In MRI, B1 field is not always uniform across the imaging volume
- B1 inhomogeneity can cause:
 - Image shading
 - Incomplete saturation (e.g. in fat suppression)
 - Incomplete inversion (e.g. CSF suppression, myocardium suppression in cardiac scar imaging)
 - Inaccurate/imprecise quantification in T1 mapping

B1 Variations

 It is highly desirable if we can excite tissue homogeneously and produce a uniform flip angle throughout

→ Adiabatic Pulses!

"Adiabatic pulses are a special class of RF pulses that can excite, refocus or invert magnetization vectors uniformly, even in the presence of a spatially nonuniform B1 field."

Adiabatic Passage Principle

Adiabatic Pulses

- A special class of RF pulses that can achieve uniform flip angle
- Flip angle is independent of the applied B1 field

$$\theta \neq \int_0^T B_1(\tau) d\tau$$

- Slice profile of an adiabatic pulse is obtained using Bloch simulations
- Can be used for excitation, inversion and refocusing

Adiabatic vs. Non-Adiabatic Pulses

Adiabatic Pulses:

$$\theta \neq \int_0^T B_1(\tau) d\tau$$

- Amplitude and frequency/phase modulation
- Long duration (8-12 ms)
- Higher B1 amplitude (>12 μT)
- Generally NOT multi-purpose (inversion pulse cannot be used for refocusing, etc.)

Non-Adiabatic Pulses:

$$\theta = \int_0^T B_1(\tau) d\tau$$

- Amplitude modulation, constant carrier frequency (constant phase)
- Short duration (0.3 ms to 1 ms)
- Lower B1 amplitude
- Generally multi-purpose

Adiabatic Pulses

Frequency modulated pulses:

$$B_1(t) = A(t) \exp^{-i\int \omega_1(t')dt'}$$
 frequency envelop sweep

Or phase modulation:

$$B_1(t) = A(t) \exp^{-i\phi(t)}$$

Bloch Equation (at on-resonance)

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t')dt'}$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}_{eff}$$

where
$$ec{B}_{eff}=\left(egin{array}{c} A(t) \\ 0 \\ B_0 & rac{\omega}{\gamma}+rac{\omega_1(t)}{\gamma} \end{array}
ight)$$

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega_1(t) & 0 \\ -\omega_1(t) & 0 & \gamma A(t) \\ 0 & -\gamma A(t) & 0 \end{pmatrix} \vec{M}$$

Magnetization Plot

To the board ...

Adiabatic Excitation

- At the end of the pulse, all the magnetization is in the transverse plane → so we have adiabatic excitation!
- This is also called an adiabatic half passage (AHP)

Adiabatic Inversion

 An adiabatic inversion requires an adiabatic full passage (AFP) pulse:

Adiabatic Inversion

(b)

 $\vec{B}_{\rm eff}(t)$

Adiabatic Inversion

Design of Adiabatic Inversion

- General equation for an adiabatic pulse:

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t')dt'}$$

- Many different types of adiabatic pulses can be designed by choosing different amplitude and frequency modulation functions
- The most famous one is...

The Hyperbolic Secant Inversion Pulse!

Hyperbolic Secant Pulse Equations

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t')dt'}$$

where

$$A(t) = A_0 sech(\beta t)$$

$$\omega_1(t) = -\mu\beta \tanh(\beta t)$$

A₀: peak amplitude (µT)

β: frequency modulation parameter (rad/s)

μ: phase modulation parameter (dimensionless)

Hyperbolic Secant Pulse Example

Amplitude Modulation, A(t)

Frequency Modulation, $\omega_1(t)$

Pulse Parameters:

$$A_0 = 12 \mu T$$

 $\mu = 5$
 $B = 672 \text{ rad/s}$
Duration = 10.24 ms

Comparing Hyperbolic Secant with an AFP Example

Amplitude Modulation, A(t)

Hyperbolic Secant Pulse

Frequency Modulation, $\omega_1(t)$

General Adiabatic Full Passage pulse

Some Examples of Other Adiabatic Inversion Pulses

Pulse Name A(t)
$$\omega_1(t)$$

Lorentz $\frac{1}{1+\beta\tau^2}$ $\frac{\tau}{1+\beta\tau^2} + \frac{1}{\sqrt{\beta}} \tan^{-1}(\sqrt{\beta}\tau)$

HS $\operatorname{sech}(\beta\tau)$ $\frac{\tanh(\beta\tau)}{\tanh(\beta)}$

Gauss^c $\exp\left(-\frac{\beta^2\tau^2}{2}\right)$ $\frac{\operatorname{erf}(\beta\tau)}{\operatorname{erf}(\beta)}$

Hanning $\frac{1+\cos(\pi\tau)}{2}$ $\tau + \frac{4}{3\pi}\sin(\pi\tau)\left[1 + \frac{1}{4}\cos(\pi\tau)\right]$

HSn^c $(n=8)$ $\operatorname{sech}(\beta\tau^n)$ $\int \operatorname{sech}^2(\beta\tau^n) \, \mathrm{d}\tau$

Sin40^d $(n=40)$ $1 - \left|\sin^n\left(\frac{\pi\tau}{2}\right)\right|$ $\tau - \int \sin^n\left(\frac{\pi\tau}{2}\right)\left(1 + \cos^2\left(\frac{\pi\tau}{2}\right)\right) \, \mathrm{d}\tau$

Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, vol. 10, p423

Some Examples of Other Adiabatic Inversion Pulses

The shape of the inversion profile depends on the choice A(t) and $\omega_1(t)$!

Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, vol. 10, p423

What Will Inversion Profile Look Like?

Inversion Profiles

- The inversion profile typically calculated using Bloch simulation of the RF pulse (will be covered later) shows us the <u>inversion efficiency</u> and <u>RF</u> <u>bandwidth</u>
- The inversion efficiency depends strongly on the B1 amplitude (as well as pulse duration, T1, T2 and pulse shape)
- For the hyperbolic secant pulse,

RF spectral bandwidth = $\mu\beta$

 $B_{1max} >> (\beta \sqrt{\mu})/\gamma$ (B₁ threshold for adiabaticity)

Hyperbolic Secant: Adiabatic Property

Original Pulse (100%) $B1_{max} = 12 \mu T$

75% Attenuated Pulse $B1_{max} = 9 \mu T$

Hyperbolic Secant: Adiabatic Property

Original Pulse (100%) $B1_{max} = 12 \mu T$

60% Attenuated Pulse $B1_{max} = 7.2 \mu T$

B1 Threshold ≈ 6 µT

Original Pulse (100%) B1 = 12 μT

125% Amplified Pulse B1 = 15 μ T

150% Amplified Pulse B1 = 18 µT

Comments

- Many envelope/modulation functions work
- If a range of adiabaticity is required, optimization can help reduce pulse length
- Hyperbolic Sech needs to be truncated, which can affect the overall performance

Thank You!

- Further reading
 - Read "Adiabatic Refocusing Pulses" p.200-212
 - Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, Vol. 10, 423-434 (1997)
- Acknowledgments
 - John Pauly's EE469b (RF Pulse Design for MRI)

Kyung Sung, PhD ksung@mednet.ucla.edu https://mrrl.ucla.edu/sunglab/