Fast Imaging Trajectories:
Non-Cartesian Sampling (2)

M229 Advanced Topics in MR
Holden H. Wu, Ph.D.
2022.05.03

Department of Radiological Sciences
David Geffen School of Medicine at UCLA



Class Business

e Homework 2 due 5/6 Fri

® Final project
- Proposal due 5/9 Mon
can send us a draft to get feedback

- Abstract due 6/3 Fri
- Presentation date/time



Outline

e Spiral Trajectory

® Non-Cartesian 3D Trajectories

- 3D stack of radial
- 3D radial
- 3D cones

® Non-Cartesian Image Reconstruction

- Gridding reconstruction
= Gradient measurement
= Off-resonance correction



Spirals

“THE” non-Cartesian trajectory

Highly robust to motion/flow effects

Very fast!

- optimal use of gradients in 2D

- can acquire one image in ~100 ms



Spirals: Sampling Requirements

N interleaves
2 kr,max =1/dx
dk=1/FOV

Design 1 interleaf

and rotate

Subject to HW limits



Spirals: Gradient Design

k-space trajectory k-space pos vs. time

Gradients vs. time ~ Slew rate vs. time
T T T T T 2 ,.};”'. . s : wRate v ],.., I { x




Spirals: Image Reconstruction

k Gridding Algorithm

yu




Spirals: Image Reconstruction

Gridding Algorithm




Spirals: Image Reconstruction

Gridding Algorithm

Follow with 2D Fourier Transform ...



Spirals: Gradient Delays
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2 sample delay 1 sample delay calibrated



Spirals: Off-Resonance Effects
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Nintiv = 8 Nintiv = 16 Nintiv = 48
Trd = 26.67/ ms Trd =13.41 ms Trd =4.61 ms



Spirals: Practical Considerations

Trajectory design
Gradient waveform calibration
kK-Space density compensation

Off-resonance correction

Fat suppression

Gridding reconstruction

applies to non-Cartesian MRI in general



Spirals: Pros and Cons

Pros

- Very fast (up to single shot)
- Very short TE
- Robust to motion/flow effects

Ccons

- May have mixed contrast
- Sensitive to gradient delays

- Sensitive to off-resonance effects



Spirals: Real-Time Cardiac MRI

- Healthy subject; 1.5 T, 8-ch array

- Golden-angle ordering

- Spiral 2D GRE; 8-mm slice

- Spatial resolution = 1.6 mm

- SPIRIT recon with R =2

-40 cm, 1.6 mm

- 250x250 matrix @ 6 fps

- 12-fold reduction in #TRs (vs. 2DFT)
- 8-TR sliding window display (16 fps)

Wu HH et al., ISMRM 2013, p3828



Spirals: 3D LGE MR

3D Spiral IR-GRE

- 6-interleaf VD spiral
- 7.5-ms readout

- 90 x 90 x 11 matrix
- outer volume suppr

- water-only RF exc prs - — e
-TR=15.48 ms < & ’

- 8-HB BH scan &. “ ‘“ ‘vﬁ
Reconstruction T LR s P, ",
_SPIRIT (R = 2) ) - AN -

- ~5-sec recon
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courtesy of Joelle Barral & Juan Santos (HeartVista)



3D Non-Cartesian Sampling

Kz

-
=

==

Ky

3D Stack of Stars 3D Stack of Rings 3D Cones

and much more ...



3D Stack-of-Radial

z Pros
- Straightforward extension of radial

- /Av K Robust to motion
~ , ~ - Can tolerate a lot of undersampling

= /4» SS~_ Cons
, ~ k, - May have mixed contrast

- Sensitive to gradient delays
- Sensitive to off-resonance effects

aka Stack-of-Stars



3D Stack-of-Radial: Liver MR

3D Cartesian MRI Free-breathing 3D Stack-of-Radial MRI

Insufficient breath-holding

Sagittal

courtesy of Tess Armstrong



3D Radial

z Pros
- Robust to motion (get DC every TR)
- Can tolerate a lot of undersampling
- Half-spoke PR has very short TE
Cons
- May have mixed contrast
- Sensitive to gradient delays
- Sensitive to off-resonance effects

image from http.//en.wikipedia.org/wiki/Koosh_ball



http://en.wikipedia.org/wiki/Koosh_ball

3D Radial: Coronary MRA

Contrast-Enhanced MRA at 3.0T
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ECG-gated, fat-saturated, inversion-recovery prepared spoiled gradient echo sequence

(1.0 mm)3 spatial resolution, 1D self navigation, CG-SENSE recon, 5.4 min scan time

courtesy of Debiao Li and J Pang (Cedars-Sinai)



3D Cones

z Pros
- Very fast (3-8x vs. Cartesian)
Ke Very short TE
- Flexible readout length
- Robust to motion/flow effects
k, Cons
- May have mixed contrast
- Sensitive to gradient delays
- Sensitive to off-resonance effects

Gurney PT et al., MRM 2006, 55: 575-82



3D Cones: Coronary MRA

Multi-Phase Thin-Slab MIP Reformats
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Wu HH et al., MRM 2013; 69: 1083-1093



3D Cones: Hi-res CMRA

Thin-Slab MIP Reformats: 0.8 mm isotropic

Right coronary
artery cross
section

1.5 T: 8-channel cardiac coil

Addy NO, et al., MRM 2015, 74:614-621



Non-Cartesian Image Reconstruction

e Gridding reconstruction
e (radient measurement

® Off-resonance correction



MRI Signal Equation

/ m(x,y) - exp(—i2m - [k; () x + k(1) y]) dx dy

= FT(mlr.5) = M(hko(t), by ()



MRI Reconstruction

m(x,y) = fT_l(M(kx,ky))

m(x,y) = //M(kx, ky) - exp(i2m - [kyx + kyy|) dk, dk,

ks ky
kK-space Image space
uniform < > uniform

non-uniform / non-uniform

simple for Cartesian (kx, ky) to Cartesian (x, y): 2D FFT

time consuming for non-Cartesian (kx, ky) to Cartesian (x, y)



Non-Cartesian Reconstruction

® |nverse Fourier transform
- aka conjugate phase reconstruction

® Gridding (+FFT)’
= grid driven interpolation

- data driven interpolation (more popular)
- forward and reverse (inverse)

® Non-uniform FFT (NUFFT)?2
® Block Uniform ReSampling (BURS)3

1 O’Sullivan JD, IEEE TMI 1985; 4: 200-207
2 Fessler JA et al., IEEE TSP 2003; 51: 560-574
3 Rosenfeld D, MRM 2002; 48: 193-202



Gridding: Basic ldea

k_
SPAEE e ks, Ky)
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convolve each acquired data point with kernel C(kx, ky)

/

resample the convolution onto Cartesian grid points
2D inverse FFT, de-apodization and FOV cropping



Gridding: Basic Math

Sampling pattern:  S(k., k,) 225 kv js by — Ky j)
Convolution kernel: C(k,, k) Grid: HI(Ak Ak, )

Gridding recon:

M (kg ky) = (M (kg ky) - S(ks, ky)) * C(ky, ky)] - T

FFTl s ihtérpolatIOh résampleto grld

(e, y) = [(m(,y)  s(,y)) - cla,y)] = HI(F(;”'V ng )

removebydeap remove by cropp/ng

— m(z,y)



Gridding: Design Issues

e Convolution kernel
- apodization; aliasing

e Sampling grid density (Cartesian)
= aliasing

e Sampling pattern (non-Cartesian)

- Impulse response and side lobes
- density characterization / compensation



Gridding: Design - Kernel

® |deal convolution kernel: SINC

- don’'t need de-apodization
- Infinite extent impractical to implement
- windowed version has limited performance

e Desired kernel characteristics
- compact support (finite width) in k-space
= minimal aliasing effects in image (sharp
transition)



Gridding: Design - Kernel

Combine with grid oversampling

1 1
AV T— WAV =
FOV, 7 FOV,
Ak, 1 Ak, 1 1
a  aoFOV,” a  aFOV, =
M(ky, ky) = [(M(ky, kyy) - S(kg, ky)) % Clky, k)] - IT( i Ky )

xroy'vy) roy 'y Ty 'y Ty 'y Akx/Oé’Aky/Oé
. L Y
m(z,y) = [(m(z,y) * s(z,y)) - c(x,y)] * LI )

aFOV, " aFOV,



Gridding: Design - Kernel

Combine with grid oversampling

i . replicas from resampling to grid
c(x,y) cause additional aliasing

aliasing

FOV

anV

a = 2 very forgiving; many kernels work well; apodization minimal
expensive ... especially for 3D gridding



Gridding: Design - Kernel

e Jointly consider a and kernel

minimize aliasing energy

characterize trade-offs

numerical designs possible

Kaiser-Bessel window works very well, with
proper choice of 5 and kw'.2; precompute a
lookup table to speedup calculations?

Crr(kz) = I (5\/1 — (kix/z)Q)

'Jackson et al., IEEE TMI 1991; 10: 473-478
2Beatty et al., IEEE TMI 2005; 24: 799-808




Gridding: Design - Density

Sampling density of S(kx, k,) not uniform:  p(kz, k;))

Pre-compensation of sampling density:

M by) = [(M () - =

density corrected on a data point basis before convolution
need to know p(kz, Ky )

)« Oy, k)] - T

from geometrical analysis, numerical analysis (Voronoi), etc.

inverse of p known as the density compensation function (DCF)



Gridding: Design - Density

Post-compensation of sampling density:

N (ky, bey) = (M (ks Ky) - s(/pczc];fy]zi)* C(ky, ky)] - 11

density corrected on a grid point basis after convolution

can estimate p along with gridding; grid all 1s:
Pk, ky) = [S(ka, ky) * C(ks, ky)] - 111
may be okay if S changes slowly

... but only an approximation and fails when S changes rapidly



Gridding: 2D Radial Example

Radial trajectory [256x256] with ramp DCF

dcfalongkr




Gridding: 2D Radial Example

Kaiser-Bessel convolution kernel with linear lookup table’

showing 1D & one side

a = 2; grid size = 2x[256 256]; kw = 4;

'Beatty et al., IEEE TMI 2005, 24: 799-808



Gridding: 2D Radial Example

Gridded data on [512x512] grid

mag of gdak arg of gdat

e ..-. [
€ T o= :"‘ '
" - -
- 2 Y




Gridding: 2D Radial Example

nverse 2D FFT produces image with 2x FOV




Gridding: 2D Radial Example

Deapodization function is FT of KB convolution kernel




Gridding: 2D Radial Example

Deapodized image




Gridding: 2D Radial Example

FOV cropped to extract desired [256x256] image

a=2,kw=4




Gridding: 2D Radial Example

FOV cropped to extract desired [256x256] image

a=1.375, kw =351

mag of img arg of img

'Beatty et al., IEEE TMI 2005, 24: 799-808



Gridding: Summary

e Data input

- k-space data
- k-space traj (usually normalized), DCF

® Gridding params

- target image dimensions [MxN]
- grid oversampling factor a
- kernel type and width

e Data output

- gridded Cartesian k-space
- reconstructed image



Gradient Measurement

® Non-Cartesian recon requires

- k-space trajectory
- density compensation function

e Both depend on actual gradient
waveforms on scanner
- can deviate from desired

o Knowledge of k-space trajectory also
important for RF design



Gradient Measurement

e Gradient imperfections cause artifacts

- FOV scaling, shifting
- signal loss, shading
= Image blurring, geometric distortion

® Sources of gradient errors

- eddy currents (Bo, linear)

- group delays (RF filters, A/D)

- amplifier limitations (BW, freq response)
- gradient warping

- other ...



Gradient Measurement

® (General techniques
- off-iso slice technique'.2, and more

® Trajectory-specific techniques
- radials, spiral4, and more

e Characterize gradient system
- assume linear time-invariant model’

1 Duyn JH et al., JIMR 1998; 132: 150-153 4 Robison RK et al., MRM 2010; 63: 1683-90
2 Beaumont M et al., MRM 2007; 58: 200-205 5 Addy NO et al., MRM 2012; 68: 120-129
3 Peters DC et al., MRM 2003; 50: 1-6



Gradient Measurement

Off-isocenter slice measurement technique

Can repeat on all three axes Gx, Gy, Gz

Duyn JH et al., JIMR 1998; 132: 150-153



Gradient Measurement

Off-isocenter slice measurement technique

Waveform ON:

Se1,Gon(l) = //m(ml,y, 2)eiPo(@Ly:Et) | o—i2mlgn [y Gr)drlan gy g,
V., 7

Waveform OFF:

Sml,GOff(t) — //m(xl,y, Z)e_wo(xl’y’z’t) dy dz
Y, Z

Phase difference:

A1 (t) = 7/0 G(7)-x1dr =21 - k(1)

Duyn JH et al., JIMR 1998; 132: 150-153



Gradient Measurement

measured grad O axis 0 (X on X): Gxit)

T T l T

O\ / \ /
\ ‘\ \ / [kx, ky]: measured(solid) vs ideal{dotted)
\ ' TR

\.»

measured | grad 0 axis 0 Déaf X); Gx(t)

200 -150 - - 100 150 200 250

~—




Gradient Measurement

e Gradient (trajectory) correction

- use actual trajectory for recon
- pre-tune bulk gradient delay

Example: Axial Spiralat 1.5 T

Nominal Trajectory Calculated Trajectory
e —— | P - :

Addy NO et al., MRM 2012; 68: 120-129



Gradient Measurement

e Off-iso slice measurement technique

two measurements per axis

can measure Xon X, YonY, Zon /Z, and
also cross terms; linearly combine

Ax should be small (may need avging)
need to account for phase wrapping

use spin echo for long waveforms

can acquire multiple slice offsets and
gradient polarities to model individual
gradient error terms



Gradient Measurement

e Delay calibration

- gradient errors (e.g., linear eddy currents)
mainly cause an apparent bulk delay

- adjust ADC window w.r.t. gradients

- delays may be different for each axis



Off-resonance Correction

e Off resonance effects (ABy, fat, etc.)

S(t) — //m(at, y) . e—iqb(w,y,t) . e_iZW'[kw (t) r+k,y (t) y] dr dy
XY

o(,y,1) = 2mp(z, y)t

- patient (scan) dependent

- pre-scan shim calibration helps

- usually negligible for Cartesian MR

- non-Cartesian MRI: signal loss,
spatial blurring, geometric distortion



Off-resonance Correction

Effects of off-res for concentric rings: PSF blurring

along kx

o Arbitrary units —

Q

Central 12% of FOV Central 12% of FOV

f=-50 Hz

1
2
=
S
>
o
5
<<
0

(o)

Central 12% of FOV Central 12% of FOV

f=-220 Hz

along kx

o Arbitrary units _

()

Central 12% of FOV Central 12% of FOV



Off-resonance Correction

e Account for field inhomogeneity

- use shorter readouts
- measure/estimate field map

S(TEl) — ]1 p— M/(Qj7y) . e_iQWw(xay)TEl
S(TEQ) — ]2 — M/(xjy) . 6—7:27T¢(33,y)TE2
b(z,y) = arg(ly - 1) /27(ATE) [£1/2rATE]

and then correct (during recon)*.2.3
time-segmented, freq-segmented, efc.

1 Noll DC et al., IEEE TMI 1991; 10: 629-637
2 Noll DC et al., MRM 1992; 25: 319-333 3 Chen JY et al., MRM 2011; 66: 390-401



Off-resonance Correction

Linear Correction
v(z,y) = fo+ fzx+ fyy  (can fit to this model)

d(x,y) =21 fot + 2m Ak, (t)x 4+ 20 Ak, (1)y
Ak, (t) = fot, Aky(t) = f,t

s(t) =20 [ [, ) - e AL OO AR O] gy
demod XY shift k-space trajectory

Can follow with frequency-segmented off-res correction

Irarrazabal P et al., MRM 1996; 35: 278-282



Off-resonance Correction

Frequency-segmented correction

| Off-resonance
k-space data frequency map

Frequency
segment 1
f,

Frequency
segment 2
f5

[ 48

Final
Image

Frequency
segment N seg| /27

I
ll“*‘-

Bernstein et al., Handbook of MRI Sequences, Fig. 17.63



Off-resonance Correction

Example: Axial Concentric Ringsat 1.5 T

Regular Recon Field Map ORC Image

Wu HH et al., MRM 2008; 59: 102-112



Off-resonance Correction

® Field map measurement

® Segmented correction methods

- Need to recon multiple images,
Nbins ~ 4(fmax = fmin)Tacq

® (Other sources of off resonance

= concomitant gradients
- chemical shift (e.g., fat)

e Other ORC algorithms

- autofocusing (field map optional)
- combine with image reconstruction



Thanks!

e Further reading

- references on each slide
- further reading section on website

e Acknowledgments
- John Pauly’s EE369C class notes (Stanford)

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab
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