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The role of multimodal imaging

• Unique, in vivo, multi-scale view of anatomic 
and physiologic processes

• Utilized in the diagnosis, characterization, 
and clinical management of many diseases

• Biomarker of survival or treatment response
• A bridge between clinically observable level 

and lower biological scales

Hsu, W. et al. (2013). Biomedical imaging informatics in the era of precision medicine: progress, challenges, and 
opportunities. Journal of the American Medical Informatics Association : JAMIA, 20(6), 1010–3.



Imaging the “Hallmarks of Cancer”
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DCE-CT/MRI/US 18FLT-PET
1H MRS
DW-MRI

DW-MRI

DW-MRI
CT
18FDG-PET

Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov 12, 31–46 (2022). 
Padhani, A. R. & Miles, K. A. Multiparametric Imaging of Tumor Response to Therapy. Radiology 256, 348–364 (2010). 



Imaging treatment response
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Padhani, A. R. & Miles, K. A. Radiology 256, 348–364 (2010). 

Kasten, B. B. et al. Theranostics 9, 5085–5104 (2019). 



Habitat maps combining MRI and histopathology

5Jardim-Perassi, B. V. et al. Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse 
Models. Cancer Res 79, 3952–3964 (2019). 



Driving questions
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• What techniques exist for extracting biological knowledge using 
quantitative analysis of (MR) images?

• What barriers need to be addressed before biological insights can 
be reliably obtained?

• What role does imaging informatics play in the integration and 
analysis of biological information?



Outline
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• Radiomics
• Mitigating variability due to image acquisition
• Spatially registering multimodal images
• Multimodal data fusion
• Ongoing efforts and concluding thoughts



Radiomics



Gillies RJ et al. (2015). Radiomics: Images Are More than Pictures, They Are 
Data. Radiology, 278(2), 151169.

What is radiomics
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Adapted from Hosny A, et al. Nature Reviews Cancer 2018: 18:500-51

Radiomic vs deep features
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Typical radiomic analysis pipeline

Verma et al (2020) https://pubs.rsna.org/doi/full/10.1148/ryai.2020190168



Families of radiomic features

• Number of features in the document
• The required input of a morphological 

(morph.) and/or intensity (int.) ROI mask
• Requirement of image discretization (discr.)

a The entire image volume should be available when computing local 
intensity features

b Image discretization for the intensity-volume histogram is performed with 
finer discretization than required for e.g. textural features

Source: https://ibsi.readthedocs.io/en/latest/03_Image_features.html 12

https://ibsi.readthedocs.io/en/latest/03_Image_features.html


Discretization

• Intensity-resampling step applied to the image before computing 
features (used widely in intensity and texture features)

• Matrix dimensions are determined by the number of intensity values 
obtained after this resampling

• One approach: assign intensity value to bin based on:

B = number of bins (8, 16, 32, 64…)
Imin, Imax = min/max intensity values in image

13



Morphology

• Volume
• Surface area
• Sphericity
• …

Source: https://onlinelibrary.wiley.com/doi/10.1002/jmri.27930

14

https://onlinelibrary.wiley.com/doi/10.1002/jmri.27930


Intensity

• Local intensity features: computed from voxel intensities within a defined
neighborhood around a center voxel

• Intensity-based statistical features: description of how intensities within an 
ROI are distributed

• Intensity histogram features: characterization of the histogram profile after 
discretizing the original intensity distribution into bins

• Intensity-volume histogram features: description of the relationship between 
a defined discretized intensity bin and the fraction of the ROI that have voxel 
intensities within this bin

15



Texture

Source: https://www.ajronline.org/doi/pdf/10.2214/AJR.18.20624 16

https://www.ajronline.org/doi/pdf/10.2214/AJR.18.20624


Co-Occurrence Matrix

• Co-occurrence matrix is defined over an image to be the distribution 
of co-occurring values at a given offset

• How combinations of (discretized) grey levels of neighboring pixels or 
voxels in a 3D volume are distributed along one of the image directions

• Grey Level Co-occurrence Matrix (GLCM aka Harlick features) 
calculates how often a pixel with grey-level value i occurs either 
horizontally, vertically, or diagonally to adjacent pixels with the value j

• Relationship between the reference and neighboring pixel (e.g., second 
order feature)

17



Calculating GLCM

1. Discretize the image
2. Create a framework matrix
3. Decide on the spatial relation between 

the reference and neighbor
4. Count the occurrences and complete 

the framework matrix
5. Add the matrix to its transpose to 

make it symmetrical
6. Normalize the matrix

0 0 1 1

0 0 1 1

0 2 2 2

2 2 3 3

18



Mitigating variability due to image 
acquisition



Sources of variability

20



Repeatability vs reproducibility
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• Repeatability refers to “variability of the quantitative image 
biomarker when repeated measurements are acquired on the same 
experimental unit under identical or nearly identical conditions” to 
determine the measurement error

• Reproducibility refers to “variability in the quantitative image 
biomarker measurements associated with using the imaging 
instrument in real-world clinical settings”

Raunig, D. L. et al. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment. 
Stat Methods Med Res 24, 27–67 (2015). 



Factors that influence radiomics stability 

22
Timmeren, J. E. van, Cester, D., Tanadini-Lang, S., Alkadhi, H. & Baessler, B. Radiomics in medical imaging—“how-to” guide and critical reflection. 
Insights Imaging 11, 91 (2020). 



• Intraclass correlation (ICC)

• Assumes linear relationship between
variables

• Takes into account differences in the 
means of the measures being considered

• Can be generalized to multiple readers

• Concordance correlation (CCC)

• No statistical model is assumed in the 
definition

• Does not assume a common mean for 
judges’ ratings

• Applies to only two judges at a time

23

Measuring agreement



ICC values from scan/rescan of same patient

24
Hoebel, K. V. et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology Artif Intell 3, 
e190199 (2020). 



• Z score normalization
• Subtract the mean intensity of the 
entire image or a region of 
interest from each voxel value 
and dividing it by the 
corresponding standard deviation

• Mean of the voxel intensity 
distribution is centered at zero 
with unit variance

• Histogram matching
• Modify the contrast level of one 
scan according to another

• Piecewise linear transformation  
is  applied  such  that  the  
histogram  of  a  source  image  is  
matched to that of a chosen 
reference image

25

Normalization techniques

Nyúl LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med 
1999;42(6):1072–1081.



Effect of normalization
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Hoebel, K. V. et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology Artif Intell 3, 
e190199 (2020). 
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Effect of normalization

Hoebel, K. V. et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology Artif Intell 3, 
e190199 (2020). 
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Methods for normalization

Nan, Y. et al. Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-
analysis and future research directions. Inform Fusion 82, 99–122 (2022). 



Normalization via synthesis



GAN-based normalization example
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DeSilvio et al. Intensity normalization of prostate MRIs using conditional generative adversarial networks for cancer detection. 
Proc. SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, 115970J (15 February 2021)



Spatially registering multimodal 
images

Some slides were adapted from David S. Paik (Stanford University)



• Two or more images of the same or 
different patients that you wish to 
spatially align with each other

• << Multiparametric images of the 
same patient

• Imaging studies from a cohort of 
patients from which you wish to build 
an atlas >>

Source: 
http://users.loni.usc.edu/~thompson/hbm97abs.html

The need for spatial registration

32

http://users.loni.usc.edu/~thompson/hbm97abs.html


Aligning modalities

33
Tomaszewski, M. R. & Gillies, R. J. The Biological Meaning of Radiomic Features. Radiology 202553 (2021) 
doi:10.1148/radiol.2021202553. 



Registration framework
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Feature extraction 

• Raw intensity values
• Edges
• Salient features

• Points of locally maximum curvature on contour line
• Centers of windows having locally maximum variance
• Line intersections

• Statistical features
• Moment invariants
• Centroid/principal axes

• Higher level features
• Matching against models

• Anatomic atlas
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_ =

Compute similarity

• Similarity measure: maximum when images are 
perfectly aligned

• Mutual information
• Gradient correlation
• Correlation coefficient

• Distance measure: minimum when images are 
perfectly aligned

• Sum of squared differences
• Sum of absolute differences
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Compute similarity
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Transformations

• For images to become aligned,
they must be transformed

• Maps points in the “moving” image to
new locations on the “transformed” image

• Degrees of freedom (DOF)
• Rigid body (6 DOF)

• Affine (12 DOF)
• Non-linear/deformable (>12 DOF)
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Optimize transformation

• Iterative Closest Point (ICP) Algorithm
• Initial transformation is identity matrix
• Repeat

• For each point in A, find closest point in B

• Estimate the combination of rotation and 
translation that will best align each source point 
to its match 

• Compute mean squared error
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Landmark based

• Identifying corresponding points in the images and inferring the image 
transformation

• Types of landmarks (fiducial marker)
• Extrinsic

• artificial objects attached to the patient
• Intrinsic

• internal anatomical structures
• Compute the average or “centroid” of each set of points à translation 
• Rotate this point set about the new centroid difference between images is 

minimized 

40



Voxel intensity based

• Method
• Calculate the registration transformation by optimizing some measure derived 

from the voxel values in the image

• Algorithms used
• Registration by minimizing intensity difference 
• Correlation techniques 
• Ratio image uniformity

• Partitioned Intensity Uniformity

41



Radiology to pathology matching

42



Matching MRI to pathology: Challenges

43

• Deformation of resected tissue
• Devascularization
• Difficulty orientating amorphous specimens
• Tissue  shrinkage
• Thin-sectioning compression,
• Misalignment of macroscopic tissue sections
• Subdivision of macro tissue sections
• Slice thickness mismatch between sections 

prepared forlight microscopy

Alyami, W., Kyme, A. & Bourne, R. Histological Validation of MRI: A Review of Challenges in Registration of 
Imaging and Whole-Mount Histopathology. J Magn Reson Imaging 55, 11–22 (2022). 



Registering in vivo and histopathology images



Multimodal data fusion



Topol EJ. Individualized medicine from prewomb to tomb. Cell. 2014 Mar 27;157(1):241-53.

Multim
odal data fusio

n

Motivation

46



Basic types of multimodal fusion

Combination of data (CoD):
Combine features across sources to 
generate a single feature vector for 
classification

Source 1 Source 2 Source 3

Fusion of 
data

Combination of interpretations (CoI): 
Classify data from each source independently 
then aggregate the results

Source 1 Source 2 Source 3

C1 C2 C3

Fusion of 
interpretations

Lee G et al. A knowledge representation framework for integration, classification of multi-scale imaging and non-
imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and 
histology. ISBI 2009 (pp. 77-80).

C

47



General approach

Data pre-
processing

• Extract features 
from different 
data sources

Feature 
representation

• Transform 
features into a 
common
representation

Feature fusion

• Combine 
features into a 
single
representation

Classification

• Feed combined 
feature set into 
classifier

48



Examples of approaches

Viswanath SE, et al, Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: 
concepts, workflow, and use-cases. BMC medical imaging. 2017 Dec 1;17(1):2. 49



Examples of approaches

Srivastava N, Salakhutdinov RR. Multimodal learning with deep boltzmann machines. NeurIPS 2012 (pp. 2222-2230). 50



Examples of approaches

Suk HI et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI 
diagnosis. NeuroImage. 2014 Nov 1;101:569-82. 51



Examples of approaches

https://arxiv.org/ftp/arxiv/papers/1812/1812.02598.pdf 52

https://arxiv.org/ftp/arxiv/papers/1812/1812.02598.pdf


Ongoing efforts & concluding 
thoughts



Clinical and Outcomes Data

Imaging Data

Prospective biospecimens

With the goal of

1. Developing and validating of novel AI/ML 
algorithms and imaging biomarkers to assist 
clinicians with cancer diagnosis and treatment

2. Generating new biological knowledge through 
the lens of imaging

3. Discovering actionable information that can 
inform clinical management of patients

Pathology Data

Multi-omics Data

By systematically collecting

Mission: Catalyze innovative research and tool development through data integration 
and curation to improve early detection, diagnosis and treatment of cancer

Integrated Diagnostics Shared Resource

54



Functions of the shared resource

Data and specimen 
collection

Data delivery and 
knowledge discovery

Annotation and data 
curation

55



Radical 
prostatectomy 

cases

Uro-rad-path 
matching 
meeting

IDx Shared 
Resource

Historical 
mpMRI

MR in-bore 
biopsy

Biospecimen 
bank

Other data 
sources Data 

management

Annotation

Retrieval & QC PACS

Electronic 
health record Automated 

retrieval

Manual 
abstraction

Database architecture



Example: IDx Prostate

Ex vivo cases N=60+

(Wu HH, JMRI, 2019)

Resection cases N = 750
Archived images N = 741

Annotations N = 491

(Priester A, J Urology, 2017)

MR-guided Targeted Biopsy N = 254
Archived Images (biopsy + pre) N = 219

Annotations (pre) N = 150
Banked specimens N = 219

(Tan N, Radiology, 2016)

Historical mpMRI cases N = 4,071



mpMRI images Radiology Sector Map WM images Pathology Sector Map
Wibulpolprasert P et al, AJR, 2019

Precise MRI to whole mount correlation
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Slide courtesy of Grace Kim, PhD (UCLA)



Zhang, Z., Wu H.H., .... Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-
Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology 
https://dx.doi.org/10.1148/radiol.2020192330
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https://dx.doi.org/10.1148/radiol.2020192330


Zhang, Z., Wu H.H., .... Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-
Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology 
https://dx.doi.org/10.1148/radiol.2020192330
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https://dx.doi.org/10.1148/radiol.2020192330


Zhang, Z., Wu H.H., .... Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-
Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology 
https://dx.doi.org/10.1148/radiol.2020192330
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https://dx.doi.org/10.1148/radiol.2020192330


Radiomic analysis to predict outcomes

MRI slices with annotations (red: tumor; green: prostate)

Shape features
• Major axis length
• Maximum 3D Diameter
• Surface volume ratio
• …

Intensity distribution features
• Mean 
• 10 percentile
• Range 
• …

Texture features
• Gray level co-occurrence matrix
• Gray level run length matrix
• Gray level size zone matrix
• …

Combine 
slices to 
extract 
features from 
3DNormalization and 

intensity artifacts 
correction

T2w

ADC
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Current domains

Prostate
• 960+ resection cases
• 64 ex vivo cases
• 5,000+ mpMRI cases
• 310+ MR-guided biopsies

Kidney
• 1,020+ retrospective RCC 

cases
• 80+ CT/US-guided 

biopsies

Liver
• 1,700+ ablation cases
• 110+ CT/US-guided 

biopsies

Lung
• 3,500+ screening cases
• 990+ CT-guided biopsies 

Breast
• 240+ US-guided biopsies

64



Patient 
data

Data 
integration

Disease 
trajectory

interpretation

interpretability 
methods

gene 
masking class

saliency

• progression-free 
survival

• overall  survival

outcomes

probability 
of survival

years

inputs

molecular

imaging

radiogenomic
mapping

imaging

molecular

modeling

65



The Cancer Genome Atlas (TCGA)
n = 528 GBM patients
microarray
untreated, primary tumors

The Cancer Imaging Archive (TCIA)
n = 262 GBM patients
multiple image modalities

• n = 109 paired, radiogenomic
samples

• gene expression profile and pre-
operative MR imaging

Data

66



Training:

transfer weights 
+ freeze

encode decode

transcriptomic
autoencoder

fine tune
radiogenomic 

model

gene 
expression 

profile

gene 
expression 

profile

reconstructed 
gene 
expression 
profile

MRI trait

prediction of one or 
more imaging traits

MRI trait
gene 

expression 
profile

feature 
generation

output
input

Radiogenomic neural network
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masked 
gene 

expression 
profile

= expression value (gene in gene set)
= zero value (gene not in gene set)

hypoxia gene 
set

a patient’s gene 
expression 

profile

• mask the input



MRI trait
masked 

gene 
expression 

profile

push through model 

= expression value (gene in gene set)
= zero value (gene not in gene set)
= MRI trait prediction based on gene set

record 
MRI trait 
prediction

hypoxia gene 
set

a patient’s gene 
expression 

profile

• mask the input
• measure the output



MRI trait
masked 

gene 
expression 

profile

push through model 

= expression value (gene in gene set)
= zero value (gene not in gene set)
= MRI trait prediction based on gene set

record 
MRI trait 
prediction

repeat for 
each 
patient calculate AUC

• measures performance of model when only using genes from a gene set
• use AUC as strength of association

hypoxia gene 
set

a patient’s gene 
expression 

profile



• attach weights to genes based on their importance in predicting a class label

MRI trait
gene 

saliency
profile  

class saliency†, ††: change in inputs 
that affect the positive class

= saliency value
= MRI trait prediction

† Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. "Deep inside convolutional networks: Visualising image 
classification models and saliency maps." arXiv preprint (2013)
† † Kotikalapudi, Raghavendra, et al.“keras-vis.” (2017)



knowledge base

• attach weights to genes based on their importance in predicting a class label
• use of GSEA to determine what gene sets (pathways, biological processes etc.) were at the top of 

ranked genes

MRI trait
gene 

saliency
profile  

class saliency: change in inputs 
that affect the positive class

= saliency value
= MRI trait prediction

record 
gene 
saliency 
values

apply gene set 
enrichment analysis 
(GSEA†)

for a patient: rank genes 
by saliency 
values



• high grade, aggressive tumor
• abnormal, leaky blood vessels
• disrupted blood-brain barrier

T1W + Gd

Model interpretation using gene masking



• high grade, aggressive tumor
• abnormal, leaky blood vessels
• disrupted blood-brain barrier

T1W + Gd

• identified the most predictive gene sets
• gene sets are related to growth, vasculature, immune system 

processes, and involved EGFR
• gene sets associated with prior radiogenomic work
• repeated analysis for all VASARI traits

Model interpretation using gene masking



Using class saliency to predict progression

proportion of non-contrast 
enhancing tumor (nCET)

prediction of nCET involved 
neural (NL) subtype genes

imaging trait radiogenomic trait• identify radiogenomic traits using class 
saliency

• Kaplan Meier survival curves

• radiogenomic traits were able to 
differentiate progression free 
survival better than imaging traits 
alone



Concluding thoughts (1/2)

• A lot of biological information can be extracted from MRI
• Incorporating information across biological scales and modalities can lead to improved 

predictions of prognosis and treatment response

• Different modalities carry different kinds of information
• Optimal techniques for normalization, registration, and fusion are open 

challenges
• Driven by the increasing availability of multimodal datasets

• Need high quality annotations and data collection workflows

• Need better model validation tools
• Further investigation into how multi-modal features relate, model interpretability
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Concluding thoughts (2/2)

• Desiderata of a good multimodal learning model (Srivastava and Salakhutdinov)
• Similarity in the representation space implies similarity of the corresponding concepts

• Robust to missing information / fill-in missing modalities given observed ones

• Need better model validation tools
• Further investigation into how multi-modal features relate, model interpretability

• Additional resources
• Survey and taxonomy of multimodal learning (Baltrusaitis et al, 

https://doi.org/10.1109/TPAMI.2018.2798607) 

• Recent special issue on multimodal data fusion in IEEE Journal of Biomedical and Health 
Informatics
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8949677
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