Advanced Application of MRI: **Towards Quantitative Analysis & Biological Insights of Disease**

William Hsu, PhD

Associate Professor of Radiological Sciences, **Bioinformatics**, and **Bioengineering** Medical & Imaging Informatics

The role of multimodal imaging

- Unique, in vivo, multi-scale view of anatomic and physiologic processes
- Utilized in the diagnosis, characterization, and clinical management of many diseases
- Biomarker of survival or treatment response
- A bridge between clinically observable level and lower biological scales

David Geffen School of Medicine Hsu, W. et al. (2013). Biomedical imaging informatics in the era of precision medicine: progress, challenges, and opportunities. Journal of the American Medical Informatics Association : JAMIA, 20(6), 1010–3.

Imaging the "Hallmarks of Cancer"

David Geffen School of Medicine Hanahan, D. Hallmarks of Cancer: New Dimensions. *Cancer Discov* **12**, 31–46 (2022). Padhani, A. R. & Miles, K. A. Multiparametric Imaging of Tumor Response to Therapy. *Radiology* **256**, 348–364 (2010).

Imaging treatment response

Padhani, A. R. & Miles, K. A. Radiology 256, 348–364 (2010).

UCLA Health

Kasten, B. B. et al. Theranostics 9, 5085-5104 (2019).

David Geffen School of Medicine

Habitat maps combining MRI and histopathology

Health David Geffen School of Medicine

UCLA

Jardim-Perassi, B. V. *et al.* Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models. *Cancer Res* **79**, 3952–3964 (2019).

Driving questions

- What techniques exist for extracting biological knowledge using quantitative analysis of (MR) images?
- What barriers need to be addressed before biological insights can be reliably obtained?
- What role does imaging informatics play in the integration and analysis of biological information?

Outline

- Radiomics
- Mitigating variability due to image acquisition
- Spatially registering multimodal images
- Multimodal data fusion
- Ongoing efforts and concluding thoughts

Radiomics

What is radiomics

Radiomic vs deep features

UCLA Health Bavid Go

David Geffen School of Medicine

Typical radiomic analysis pipeline

Verma et al (2020) https://pubs.rsna.org/doi/full/10.1148/ryai.2020190168

Families of radiomic features

		ROI mask	int.	discr.
Feature family	count	morph.		
morphology	29	~	~	×
local intensity	2	×	✔ ^a	×
intensity-based statistics	18	×	~	×
intensity histogram	23	×	~	~
intensity-volume histogram	5	×	~	✔ ^b
grey level co-occurrence matrix	25	×	~	~
grey level run length matrix	16	×	~	~
grey level size zone matrix	16	×	~	~
grey level distance zone matrix	16	~	~	~
neighbourhood grey tone difference matrix	5	×	~	~
neighbouring grey level dependence matrix	17	×	~	~

- •
- ullet

^a The entire image volume should be available when computing local intensity features

^b Image discretization for the intensity-volume histogram is performed with finer discretization than required for e.g. textural features

David Geffen School of Medicine

UCLA

Health

Number of features in the document The required input of a morphological (morph.) and/or intensity (int.) ROI mask Requirement of image discretization (discr.)

Discretization

- Intensity-resampling step applied to the image before computing features (used widely in intensity and texture features)
 - Matrix dimensions are determined by the number of intensity values obtained after this resampling
 - One approach: assign intensity value to bin based on:

$$I_B = B \times \frac{I - I_{min}}{I_{max} - I_{min}}$$

B = number of bins (8, 16, 32, 64...) I_{min} , $I_{max} = min/max$ intensity values in image

Morphology

Source: https://onlinelibrary.wiley.com/doi/10.1002/jmri.27930

David Geffen

School of Medicine

UCLA Health

• Volume

. . .

- Surface area
- Sphericity

Intensity

- Local intensity features: computed from voxel intensities within a defined neighborhood around a center voxel
- Intensity-based statistical features: description of how intensities within an **ROI** are distributed
- Intensity histogram features: characterization of the histogram profile after discretizing the original intensity distribution into bins
- **Intensity-volume histogram features:** description of the relationship between a defined discretized intensity bin and the fraction of the ROI that have voxel intensities within this bin

Texture

UCLA Health

David Geffen School of Medicine

Co-Occurrence Matrix

- Co-occurrence matrix is defined over an image to be the distribution of co-occurring values at a given offset
 - How combinations of (discretized) grey levels of neighboring pixels or voxels in a 3D volume are distributed along one of the image directions
- Grey Level Co-occurrence Matrix (GLCM aka Harlick features) calculates how often a pixel with grey-level value i occurs either horizontally, vertically, or diagonally to adjacent pixels with the value j
 - Relationship between the reference and neighboring pixel (e.g., second) order feature)

Calculating GLCM

0	0	1	1
0	0	1	1
0	2	2	2
2	2	3	3

David Geffen

School of Medicine

Health

- 1. Discretize the image
- 2. Create a framework matrix
- 3. Decide on the spatial relation between the reference and neighbor
- 4. Count the occurrences and complete the framework matrix
- 5. Add the matrix to its transpose to make it symmetrical
- 6. Normalize the matrix

Mitigating variability due to image acquisition

David Geffen School of Medicine

Sources of variability

David Geffen School of Medicine

Repeatability vs reproducibility

- Repeatability refers to "variability of the quantitative image biomarker when repeated measurements are acquired on the same experimental unit under identical or nearly identical conditions" to determine the measurement error
- Reproducibility refers to "variability in the quantitative image biomarker measurements associated with using the imaging instrument in real-world clinical settings"

David Geffen School of Medicine

Raunig, D. L. et al. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment. Stat Methods Med Res 24, 27-67 (2015).

Factors that influence radiomics stability

MRI

UCLA

David Geffen School of Medicine

Movement

Health

Timmeren, J. E. van, Cester, D., Tanadini-Lang, S., Alkadhi, H. & Baessler, B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 11, 91 (2020).

Feature extraction

0	0	0	0
4	1	4	3
3	1	2	5
4	2	5	5

Image interpolation

- Grid alignment
- Pixel sizing Intensity discretisation Normalisation

- Mathematical formula .
- Post-processing ٠ platform

Measuring agreement

Intraclass correlation (ICC)

$$Y_{ij} = \mu + lpha_j + arepsilon_{ij},
onumber \ rac{\sigma_lpha^2}{\sigma_lpha^2 + \sigma_arepsilon^2}.$$

- Assumes linear relationship between variables
- Takes into account differences in the means of the measures being considered
- Can be generalized to multiple readers

Concordance correlation (CCC)

 $P_{CCC} =$

- definition
- judges' ratings

David Geffen

Health

$$= \frac{2\sigma_{12}}{\sigma_{\beta}^2 + \sigma_{\beta}^2 + (\mu_1 - \mu_2)^2}.$$

No statistical model is assumed in the

Does not assume a common mean for

• Applies to only two judges at a time

ICC values from scan/rescan of same patient

T2W-FLAIR

UCLA

e190199 (2020).

T1W post-contrast

Normalization techniques

- Z score normalization
 - Subtract the mean intensity of the entire image or a region of interest from each voxel value and dividing it by the corresponding standard deviation
 - Mean of the voxel intensity distribution is centered at zero with unit variance

- Histogram matching
 - Modify the contrast level of one scan according to another
 - Piecewise linear transformation is applied such that the histogram of a source image is matched to that of a chosen reference image

Nyúl LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med 1999;42(6):1072–1081.

Effect of normalization

David Geffen School of Medicine

UCLA Health

Hoebel, K. V. et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology Artif Intell 3, e190199 (2020).

Effect of normalization

UCLA Health David Geffen School of Medicine

Hoebel, K. V. *et al.* Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. *Radiology Artif Intell* **3**, e190199 (2020).

Methods for normalization

David Geffen School of Medicine

UCLA Health

Nan, Y. et al. Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, metaanalysis and future research directions. Inform Fusion 82, 99-122 (2022).

Normalization via synthesis

model update

GAN-based normalization example

David Geffen School of Medicine

UCLA Health

DeSilvio et al. Intensity normalization of prostate MRIs using conditional generative adversarial networks for cancer detection. Proc. SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, 115970J (15 February 2021)

Spatially registering multimodal images

David Geffen School of Medicine

Some slides were adapted from David S. Paik (Stanford University)

The need for spatial registration

- Two or more images of the same or different patients that you wish to spatially align with each other
 - << Multiparametric images of the same patient
 - Imaging studies from a cohort of patients from which you wish to build an atlas >>

Source: <u>http://users.loni.usc.edu/~thompson/hbm97abs.html</u>

Aligning modalities

David Geffen School of Medicine

Tomaszewski, M. R. & Gillies, R. J. The Biological Meaning of Radiomic Features. *Radiology* 202553 (2021) doi:10.1148/radiol.2021202553.

Registration framework

David Geffen School of Medicine

Feature extraction

- Raw intensity values
- Edges
- Salient features
 - Points of locally maximum curvature on contour line
 - Centers of windows having locally maximum variance
 - Line intersections
- Statistical features
 - Moment invariants
 - Centroid/principal axes
- Higher level features
- Matching against models
 - Anatomic atlas

Health

UCL

David Geffen School of Medicine

Compute similarity

- Similarity measure: maximum when images are perfectly aligned
 - Mutual information
 - Gradient correlation
 - Correlation coefficient
- Distance measure: minimum when images are perfectly aligned
 - Sum of squared differences
 - Sum of absolute differences

David Geffen School of Medicine

Compute similarity

- Feature Similarity
 - Point to point distances
- Image Similarity
 - Cross Correlation (Matched Filter, Template Matching)
 - Sum of squared differences
 - Ratio image uniformity
 - Mutual Information

$$D = \sum_{i} \sum_{j} \left\| x_i - y_j \right\|^2$$

$$CC = \sum_{i} \sum_{j} I_{1}(i,j)I_{2}(i-u,j-v)$$

$$SSD = \sum_{i} \sum_{j} \left(I_{1}(i,j) - I_{2}(i-u,j-v) - I_{2}(i-u,j$$

$$MI = -\sum_{g_1} \sum_{g_2} p(g_1, g_2) \log \left\{ \frac{p(g_1, g_2)}{p(g_1) p(g_1)} \right\}$$

David Geffen School of Medicine

Health

Transformations

- For images to become aligned, they must be transformed
- Maps points in the "moving" image to new locations on the "transformed" image
- Degrees of freedom (DOF)
 - Rigid body (6 DOF)
 - Affine (12 DOF)
 - Non-linear/deformable (>12 DOF)

Optimize transformation

- Iterative Closest Point (ICP) Algorithm
 - Initial transformation is identity matrix
 - Repeat
 - For each point in A, find closest point in B
 - Estimate the combination of rotation and translation that will best align each source point to its match
 - Compute mean squared error

$$MSE = \frac{1}{N} \sum_{i=1}^{N} \left\| p_{A,i} - R(p_{B,i}) - T \right\|^{2}$$

- A and B are unstructured point clouds with unknown correspondence of points
- A is the smaller set

Landmark based

- Identifying corresponding points in the images and inferring the image transformation
- Types of landmarks (fiducial marker)
 - Extrinsic
 - artificial objects attached to the patient
 - Intrinsic
 - internal anatomical structures
- Compute the average or "centroid" of each set of points \rightarrow translation
- Rotate this point set about the new centroid difference between images is minimized

Voxel intensity based

Method

- Calculate the registration transformation by optimizing some measure derived from the voxel values in the image
- Algorithms used
 - Registration by minimizing intensity difference
 - Correlation techniques
 - Ratio image uniformity
 - Partitioned Intensity Uniformity

256 x 256 x 9

Radiology to pathology matching

Matching MRI to pathology: Challenges

- Deformation of resected tissue
- Devascularization
- Difficulty orientating amorphous specimens
- Tissue shrinkage
- Thin-sectioning compression,
- Misalignment of macroscopic tissue sections
- Subdivision of macro tissue sections
- Slice thickness mismatch between sections prepared forlight microscopy

David Geffen School of Medicine

Alyami, W., Kyme, A. & Bourne, R. Histological Validation of MRI: A Review of Challenges in Registration of Imaging and Whole-Mount Histopathology. J Magn Reson Imaging 55, 11-22 (2022).

Standard clinical

MRI-histology

Registering in vivo and histopathology images

Multimodal data fusion

Motivation

UCLA Health

David Geffen School of Medicine

Topol EJ. Individualized medicine from prewomb to tomb. Cell. 2014 Mar 27;157(1):241-53.

Basic types of multimodal fusion

Combination of data (CoD):

Combine features across sources to generate a single feature vector for classification

Combination of interpretations (Col): Classify data from each source independently then aggregate the results

David Geffen School of Medicine Lee G et al. A knowledge representation framework for integration, classification of multi-scale imaging and nonimaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology. ISBI 2009 (pp. 77-80).

General approach

Knowledge Representation

Knowledge Fusion

David Geffen School of Medicine Viswanath SE, et al, Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases. BMC medical imaging. 2017 Dec 1;17(1):2.

David Geffen UCLA Health **School of Medicine**

Srivastava N, Salakhutdinov RR. Multimodal learning with deep boltzmann machines. NeurIPS 2012 (pp. 2222-2230).

Multimodal DBM

David Geffen School of Medicine

UCLA Health

Suk HI et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage. 2014 Nov 1;101:569-82.

UCLA Health

David Geffen School of Medicine

Ongoing efforts & concluding thoughts

David Geffen School of Medicine

Integrated Diagnostics Shared Resource

Mission: Catalyze innovative research and tool development through data integration and curation to improve early detection, diagnosis and treatment of cancer

By systematically collecting

Clinical and Outcomes Data

Imaging Data

Pathology Data

Prospective biospecimens

With the goal of

- 1. Developing and validating of novel AI/ML algorithms and imaging biomarkers to assist clinicians with cancer diagnosis and treatment
- 2. Generating new biological knowledge through the lens of imaging
- 3. Discovering actionable information that can inform clinical management of patients

Multi-omics Data

Functions of the shared resource

luadrant Right peripheral gland	Clock Face 700-800	Apex to Base 100	Primary Location 25	Show Location Diagram	
			Other Locations 1,11,19,23,25,35		
elationship to Capsule buts more than 1 cm or b	buldges capsule ✓ Side	ght Size ft 1.5 iidline ilateral	Location anterior posterior posteromedial posterolateral	Zone eripheral zone transition zone anterior fibromuscular stroma	Level apex midgland base
verall Score Overall Pirads 5	Score ECE Suspicion	Likert 👻			
2 Score T2 Scor	e Pirads T2 Si • irree	hape T2 Signal gular • Markedly H	T2 Margin Aypointense 👻 Non Circums	cribed - T2 Volume	_
ofuse T2 Tumor Syme	T2 Tumor Contact Length				
	Diffusion Score Pirads	Is DWI Fo	ocal DWISignal Hypointense - ADC	Average ADC Signal - 754	
iffusion Score		O NO O NA			
ifusion Score WI Tumor Volume	ADC Tumor Contact	O No O NA			

Data and specimen collection

Annotation and data curation

Data delivery and knowledge discovery

Database architecture

Example: IDx Prostate

(Priester A, J Urology, 2017)

Resection cases N = 750 Archived images N = 741 Annotations N = 491

Historical mpMRI cases N = 4,071

(Tan N, Radiology, 2016)

MR-guided Targeted Biopsy N = 254 Archived Images (biopsy + pre) N = 219 Annotations (pre) N = 150 **Banked specimens N = 219**

(Wu HH, JMRI, 2019)

Ex vivo cases N=60+

Precise MRI to whole mount correlation

mpMRI images

Radiology Sector Map

WM images

Pathology Sector Map

Wibulpolprasert P et al, AJR, 2019

David Geffen School of Medicine

UCLA Health

Zhang, Z., Wu H.H., Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology https://dx.doi.org/10.1148/radiol.2020192330

David Geffen School of Medicine

UCLA Health

Zhang, Z., Wu H.H., Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology https://dx.doi.org/10.1148/radiol.2020192330

DR-CSI signal component fraction maps

UCLA Health **David Geffen School of Medicine** Zhang, Z., Wu H.H., Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology https://dx.doi.org/10.1148/radiol.2020192330

Radiomic analysis to predict outcomes

David Geffen School of Medicine

0

Current domains

Prostate

- 960+ resection cases
- 64 ex vivo cases
- 5,000+ mpMRI cases
- 310+ MR-guided biopsies

Kidney

- 1,020+ retrospective RCC cases
- 80+ CT/US-guided biopsies

Lung

- 3,500+ screening cases
- 990+ CT-guided biopsies

Breast • 240+ US-guided biopsies

David Geffen School of Medicine

Liver

- 1,700+ ablation cases
- 110+ CT/US-guided biopsies

Data

The Cancer Genome Atlas (TCGA)

n = 528 GBM patients microarray untreated, primary tumors

The Cancer Imaging Archive (TCIA) n = 262 GBM patients multiple image modalities

- n = 109 paired, radiogenomic samples
- gene expression profile and preoperative MR imaging

Radiogenomic neural network

more imaging traits

David Geffen School of Medicine

• mask the input

- mask the input
- measure the output

- measures performance of model when only using genes from a gene set
- use AUC as strength of association

attach weights to genes based on their importance in predicting a class label •

[†] Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. "Deep inside convolutional networks: Visualising image classification models and saliency maps." *arXiv preprint* (2013) ⁺ Kotikalapudi, Raghavendra, et al. "keras-vis." (2017)

- attach weights to genes based on their importance in predicting a class label
- use of GSEA to determine what gene sets (pathways, biological processes etc.) were at the top of ranked genes

knowledge base

ng a class label cal processes etc.) were at the top of
Model interpretation using gene masking

- high grade, aggressive tumor
- abnormal, leaky blood vessels
- disrupted blood-brain barrier

Model interpretation using gene masking

- high grade, aggressive tumor
- abnormal, leaky blood vessels
- disrupted blood-brain barrier

transcriptomic drivers

AP see also
0.84
0.84 [JDB14, GCH13]
0.76
0.75
0.89
0.85, 0.83
0.84
0.73, 0.73
0.88
0.84
0.73–0.76 [DNW08]
0.75
0.65
0.80, 0.77 [JDB14]
all 0.85 [JDB14, GCH13]
0.85, 0.83 0.84 0.73, 0.73 0.88 0.84 0.73–0.70 0.75 0.65 0.80, 0.7 all 0.85

- identified the most predictive gene sets
- gene sets are related to growth, vasculature, immune system processes, and involved EGFR
- gene sets associated with prior radiogenomic work
- repeated analysis for all VASARI traits

sets sculature, immune system

liogenomic work aits

Using class saliency to predict progression

 identify radiogenomic traits using class saliency

imaging trait

- Kaplan Meier survival curves
- radiogenomic traits were able to differentiate progression free survival better than imaging traits alone

proportion of non-contrast enhancing tumor (nCET)

radiogenomic trait

prediction of nCET involved neural (NL) subtype genes

Concluding thoughts (1/2)

- A lot of biological information can be extracted from MRI
 - Incorporating information across biological scales and modalities can lead to improved predictions of prognosis and treatment response
- Different modalities carry different kinds of information
- Optimal techniques for normalization, registration, and fusion are open challenges
 - Driven by the increasing availability of multimodal datasets
 - Need high quality annotations and data collection workflows
- Need better model validation tools
 - Further investigation into how multi-modal features relate, model interpretability

Concluding thoughts (2/2)

- Desiderata of a good multimodal learning model (Srivastava and Salakhutdinov)
 - Similarity in the representation space implies similarity of the corresponding concepts
 - Robust to missing information / fill-in missing modalities given observed ones
- Need better model validation tools
 - Further investigation into how multi-modal features relate, model interpretability
- Additional resources
 - Survey and taxonomy of multimodal learning (Baltrusaitis et al, https://doi.org/10.1109/TPAMI.2018.2798607
 - Recent special issue on multimodal data fusion in IEEE Journal of Biomedical and Health Informatics https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8949677

Thank you

William Hsu, PhD Associate Professor of Radiological Sciences, Bioinformatics, and Bioengineering whsu@mednet.ucla.edu

UCLA Health

David Geffen School of Medicine

The Hsu Lab gratefully acknowledges support from the National Science Foundation (#1722516), National Institutes of Health (R56 EB031993; R01 CA22079; R01 EB029346; R01 CA210360; R37 CA240403), UCLA SPORE in Prostate Cancer, Jonsson Comprehensive Cancer Center, and the Department of Radiological Sciences.

