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The role of multimodal imaging

* Unique, in vivo, multi-scale view of anatomic
and physiologic processes

« Utilized Iin the diagnosis, characterization,
and clinical management of many diseases

* Biomarker of survival or treatment response

* A bridge between clinically observable level
and lower biological scales

David Geffen Hsu, W. et al. (2013). Biomedical imaging informatics in the era of precision medicine: progress, challenges, and
UCLA I Iealth School of Medicine opportunities. Journal of the American Medical Informatics Association : JAMIA, 20(6), 1010-3. U L
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Imaging the “Hallmarks of Cancer”
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David Geffen Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov 12, 31-46 (2022).
UCLA I Iealth School of Medicine Padhani, A. R. & Miles, K. A. Multiparametric Imaging of Tumor Response to Therapy. Radiology 256, 348—-364 (2010). 3 UCL
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Imaging treatment response

IMAGING STRATEGIES IN NEURO-ONCOLOGY

STRUCTURAL PHYSIOLOGICAL MOLECULAR
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Kasten, B. B. et al. Theranostics 9, 5085-5104 (2019).
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Habitat maps combining MRI and histopathology
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David Geffen Jardim-Perassi, B. V. et al. Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse 5
School of Medicine Models. Cancer Res 79, 3952-3964 (2019).
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Driving questions

* What techniques exist for extracting biological knowledge using
qguantitative analysis of (MR) images”?

* \What barriers need to be addressed before biological insights can
be reliably obtained?

* \What role does imaging informatics play in the integration and
analysis of biological information?

sngl‘:fo?::f I\?Igdicine ° UCLAM | |
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* Radiomics

» Mitigating variability due to image acquisition
» Spatially registering multimodal images

* Multimodal data fusion

» Ongoing efforts and concluding thoughts

sngl‘:fo?::f I\?Igdicine ! UCLAM | |
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Radiomics
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What is radiomics

l. Image patients Il. Identify ROI lll. Render in 3D IV. Extract Features IV. Data Integration
Data Mining
Model Building

o AN 1.0{~ T
e o8|l ~
—— 7, 0.6
Ry \ A
Whole tumor Rogy =2 04|l /' -
N - 0.2; ,
0.0

0.0 0.20.4 0.6 0.81.0

Gillies RJ et al. (2015). Radiomics: Images Are More than Pictures, They Are
Data. Radiology, 278(2), 151169.

Habitats
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Radiomic vs deep features

Predefined engineered features + traditional machine learning

Feature engineering

ll_IIlII Selection Classification
Histogram
> >
Texture % Shape
Expert knowledge

Deep learning
Input Hidden layers Output

Increasingly higher-level features -

D 20

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

UCLA Health ‘ SDgl‘:foﬁgfh?Igdicine Adapted from Hosny A, et al. Nature Reviews Cancer 2018: 18:500-51 10 UCLA I\/l | |
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Typical radiomic analysis pipeline

Histopathology

Data

Bias correction  Skull stripping Registration

Segmentation

Pre-processing

Standardization

Pro-Standardization

Feature extraction Feature selection

Necrosis Enhancing Edema
tumor

Verma et al (2020) https://pubs.rsna.org/doi/full/10.1148/ryai.2020190168
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Families of radiomic features

ROI mask
Feature family count morph. int discr.
morphology 29 v v X _
o a  Number of features in the document
local intensity 2 X v X ] _ f h | _ |
[ J
intensity-based statistics 18 X v X The reqUIred Inp_Ut O a morp O Og|Ca
i (morph.) and/or intensity (int.) ROl mask
intensity histogram 23 X v v ] ] ] ] ] ]
o | : « Requirement of image discretization (discr.)
intensity-volume histogram = X v v
grey level co-occurrence matrix 25 X v v
grey level run length matrix 16 X v v
grey level size zone matrix 16 X v v
, ‘ 2 The entire image volume should be available when computing local
grey level distance zone matrix 16 v v v . )
intensity features
neighbourhood grey tone difference matrix 5 X v v
. _ . b Image discretization for the intensity-volume histogram is performed with
neighbouring grey level dependence matrix 17 X ¥ v finer discretization than required for e.g. textural features

THE HSU LAB

David Geffen Source: https://ibsi.readthedocs.io/en/latest/03_Image_features.html UC L A I\/l | |
VoW Health ‘ School of Medicine -
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https://ibsi.readthedocs.io/en/latest/03_Image_features.html

Discretization

* |Intensity-resampling step applied to the image before computing
features (used widely in intensity and texture features)

- Matrix dimensions are determined by the number of intensity values
obtained after this resampling

- One approach: assign intensity value to bin based on:

I, = B x I = Ly B = number of bins (8, 16, 32, 64...)
Imax = Lmin lins 1max = MiNn/max intensity values in image
97N Health | séhoorof Medicine « UCLAMI|
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Morphology

e \Volume
e Surface area
* Sphericity

Source: https://onlinelibrary.wiley.com/doi/10.1002/jmri.27930

1S¥Y Health | Do Geften e « UCLAMII
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https://onlinelibrary.wiley.com/doi/10.1002/jmri.27930

Intensity

* Local intensity features: computed from voxel intensities within a defined
neighborhood around a center voxel

 Intensity-based statistical features: description of how intensities within an
ROI are distributed

 Intensity histogram features: characterization of the histogram profile after
discretizing the original intensity distribution into bins

 Intensity-volume histogram features: description of the relationship between
a defined discretized intensity bin and the fraction of the ROI that have voxel
Intensities within this bin

sngl‘:fo?::f I\?Igdicine 1o UCLAM | |
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Texture

Image Acquisition
and Segmentation

T2-weighted MR image

Health ‘ David Geffen

School of Medicine

ROI Definition

Segmented tumor ROI

Segmented normal
tissue ROI

Feature Extraction

Entropy in segmented tumor ROI
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Statistical Analysis

Box-and-whisker plot
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Source: https://www.ajronline.org/doi/pdf/10.2214/AJR.18.20624
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https://www.ajronline.org/doi/pdf/10.2214/AJR.18.20624

Co-Occurrence Matrix

» Co-occurrence matrix is defined over an image to be the distribution
of co-occurring values at a given offset

- How combinations of (discretized) grey levels of neighboring pixels or
voxels in a 3D volume are distributed along one of the image directions

* Grey Level Co-occurrence Matrix (GLCM aka Harlick features)
calculates how often a pixel with grey-level value | occurs either
horizontally, vertically, or diagonally to adjacent pixels with the value |

- Relationship between the reference and neighboring pixel (e.g., second
order feature)

SDgl‘::;jolG:fﬁ I\?Igdicine 1 UCLAM | |
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Calculating GLCM

-n-- 1. Discretize the image

2. Create a framework matrix
-n-- 3. Decide on the spatial relation between
--nn the reference and neighbor
n- 4. Count the occurrences and complete

the framework matrix

5. Add the matrix to its transpose to
make it symmetrical

6. Normalize the matrix

ngl‘:fo?::f I\?IZdicine 10 UCLAM | |

IIIIIIIIIIIIIIIIIIIIIIIIII

Health




Mitigating variability due to image
acquisition
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Sources of variability

Image
Imaging Measurement Performance

Acquisition System Algorithm Analysis

Patient(Site) /
Subject

Patient Instrument / Algorithm /
Variability Acquisition Measurement
Variability Variability

1S¥Y Health | Do Geften e » UCLAMI|
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Repeatability vs reproducibility

» Repeatability refers to “variability of the quantitative image
biomarker when repeated measurements are acquired on the same
experimental unit under identical or nearly identical conditions™ to
determine the measurement error

* Reproducibility refers to “variability in the quantitative image
biomarker measurements associated with using the imaging
instrument in real-world clinical settings”

David Geffen Raunig, D. L. et al. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment. o1
School of Medicine Stat Methods Med Res 24, 27-67 (2015).

Health
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Factors that influence radiomics stability

Image acquisition Reconstruction Segmentation Post-processing Feature extraction

-~

* Image interpolation

* Field strength

* Sequence design e  Manual 2D ' o

*  Matrix size (acquired) o e  Manual 3D ( resan.\ph'ng /

*  Field of view Y st *  Semi-automated 2D rescaling) :
MRI * Slice thickness ) g:::::::g; ‘:‘) *  Semi-automated 3D : gi::Ias'i'zgi:mem 5

*  Acceleration techniques . *  Automated 2D : g

*  Vendor technique R e *  Intensity discretisation

*  Contrast timing * Size of the ROI (‘rebinning”)

. Normalisation
. Movement

UCLA H lt David Geffen Timmeren, J. E. van, Cester, D., Tanadini-Lang, S., Alkadhi, H. & Baessler, B. Radiomics in medical imaging—*how-to” guide and critical reflection.
- Insights Imaging 11, 91 (2020).
ealth | sehool of Medicine e mesn . o1 ez

Mathematical formula
Post-processing
platform

THE HSU LAB
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Measuring agreement

* Intraclass correlation (ICC)
Yij = pn+ a; + €,

<&

03 + 03
 Assumes linear relationship between
variables

« Takes into account differences in the
means of the measures being considered

e Can be generalized to multiple readers

David Geffen
School of Medicine

Health

» Concordance correlation (CCC)

2012
o; + 05+ (41 — W)’

Pccce =

 No statistical model is assumed In the
definition

* Does not assume a common mean for
judges’ ratings

* Applies to only two judges at a time

= UCLAMI|
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ICC values from scan/rescan of same patient

T2W-FLAIR T1W post-contrast
<0.001 <0.001
<0.001 !
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U C L A H lth David Geffen Hoebel, K. V. et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology Artif Intell 3, 04 U C L M | |
ca School of Medicine ~ ©190199 (2020). A
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Normalization techniques

» Z score normalization » Histogram matching
- Subtract the mean intensity of the - Modify the contrast level of one
entire image or a region of scan according to another

interest from each voxel value
and dividing it by the
corresponding standard deviation

- Piecewise linear transformation
iIs applied such that the
histogram of a source image is
- Mean of the voxel intensity matched to that of a chosen
distribution is centered at zero reference image
with unit variance

Nyul LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med
1999;42(6):1072—-1081.

David Geffen

School of Medicine 2 UCLAM ||
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ICC

Effect of normalization

T1W post-contrast
intensity features
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Health |
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Hoebel, K. V. et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology Artif Intell 3,

190199 (2020).

THE HSU LAB
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Effect of normalization

no normalization histogram matched z-score normalized scan rescan

JSD=0822  © JSD=0235 | JSD = 0.269

T2W-FLAIR
T2W-FLAIR

JSD=0.832 JSD=0376 | JSD =0.121 |

T1W post-contrast
EREEN]
T1W post-contrast

2 OB - - - - i > - - ’ (T B -
»0 % o9 wo W00 1200 1em - ¢ . 5 . T

ROI voxel intensities scan ROI voxel intensities rescan

THE HSU LAB

U C L A H lth David Geffen Hoebel, K. V. et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology Artif Intell 3, 07 U C L I\/I | |
€d School of Medicine ~ ©190199 (2020). A
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for normalization

[Harmonisation Techniques)
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_ HE HSU LAB
UC L A I I 1 h David Geffen Nan, Y. et al. Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-
ea t School of Medicine analysis and future research directions. Inform Fusion 82, 99-122 (2022). 28
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Normalization via synthesis

[Random input vector Real example

l ::[ Discriminator model ](- -

]
' 3
[ Generator model ]—> Generated example : %
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A o —
: ' B
I 1o
I Y ' o
S { Binary classification } .
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GAN-based normalization example

Nyul GAN
Normalized Normalized

-----------------------------------------

T2w

A4

Discriminator

l

Real/Fake Normalization o

A4

Labeled lesion

Cancer
Detection

Model

ADC

1
1
:
i Legend
: l:] Encoder
: Decoder
GAN ' Discriminator >
Normalized ' 3
1 Bt 3s
I Real/Fake Normalization I H 0 g
_________________________________________ o’ e
o
David Geffen DeSilvio et al. Intensity normalization of prostate MRIs using conditional generative adversarial networks for cancer detection.
School of Medicine  Proc- SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, 115970J (15 February 2021) 30

MEDICAL & IMAGING INFORMATICS



Spatially registering multimodal
Images
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The need for spatial registration

Health

» Two or more images of the same or
different patients that you wish to
spatially align with each other

- << Multiparametric images of the
same patient

- Imaging studies from a cohort of

patients from which you wish to build
an atlas >>

David Geffen
School of Medicine

Displacement
(mm)

Source:

http://users.loni.usc.edu/~thompson/hbm97abs.html

= UCLAMI|
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http://users.loni.usc.edu/~thompson/hbm97abs.html

Aligning modalities
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CLA H 1 h David Geffen Tomaszewski, M. R. & Gillies, R. J. The Biological Meaning of Radiomic Features. Radiology 202553 (2021)
U ea t School of Medicine doi:10.1148/radiol.2021202553. 33 U L
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Registration framework
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Pre-processing

Stopping criteria

David Geffen
School of Medicine 34 UCL A M | |
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Feature extraction

Pre-processing

* Raw intensity values v >

 Edges

« Salient features
- Points of locally maximum curvature on contour line
- Centers of windows having locally maximum variance
- Line intersections

 Statistical features
- Moment invariants
- Centroid/principal axes

* Higher level features

* Matching against models
- Anatomic atlas

Y[e¥.Y Health ‘ Sl ot Madicine
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Compute similarity
Optimize transformation
Stopping criteria
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Compute similarity

Pre-processing

» Similarity measure: maximum when images are 3¢ =
perfectly aligned g

Feature extraction

Optimize transformation

- Mutual information
- Gradient correlation
- Correlation coefficient

* Distance measure: minimum when images are
perfectly aligned

- Sum of squared differences
- Sum of absolute differences

Y[e¥.Y Health ‘ Sl ot Madicine

Stopping criteria




Compute similarity

Pre-processing
Feature extraction
Optimize transformation
Stopping criteria

* Feature Similarity
* Point to point distances o EE

)

'xi_yj

* Image Similarity
» Cross Correlation (Matched €C =2 2LGNLG=uj-v)
Filter, Template Matching) 55D =3 S (1) - LG - ] -))

* Sum of squared differences s

_ Ox DI )
* Ratio image uniformity RIU = WhereRbD =15
* Mutual Information Mi=-3'S e g)IOO{ P(81:8,) }
& &R ey p(gs)

1S¥Y Health | Do Geften e » UCLAM||
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Transformations

Compute similarity
Stopping criteria

* For images to become aligned, £ Bk
they must be transformed

* Maps points in the “moving” image to
new locations on the “transformed” image

* Degrees of freedom (DOF)
- Rigid body (6 DOF)
. Affine (12 DOF)
- Non-linear/deformable (>12 DOF)

David Geffen
School of Medicine

Health




Optimize transformation

* |terative Closest Point (ICP) Algorithm

- Initial transformation is identity matrix
- Repeat
- For each point in A, find closest point in B

- Estimate the combination of rotation and
translation that will best align each source point
to its match

- Compute mean squared error

N
MSE =3 |pa, = Rp, ) - [
i=1

Y[e¥.Y Health ‘ Sl ot Madicine

Pre-processing

Feature extraction

A and B are unstructured
point clouds with unknown

correspondence of points

A 1s the smaller set

39

Compute similarity
Stopping criteria
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Landmark based

* |dentifying corresponding points in the images and inferring the image
transformation
* Types of landmarks (fiducial marker)

- Extrinsic
- artificial objects attached to the patient

- Intrinsic
- Internal anatomical structures
» Compute the average or “centroid” of each set of points = translation

» Rotate this point set about the new centroid difference between images is
minimized

SDgl‘::;jolG:fﬁ I\?Igdicine 40 UCLAM | |
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Voxel intensity based

 Method

- Calculate the registration transformation by optimizing some measure derived
from the voxel values in the image

\mage 1 unregistered registered

 Algorithms used

- Registration by minimizing intensity difference

Histogram

- Correlation techniques

- Ratio image uniformity

Difference
image

- Partitioned Intensity Uniformity

sagittal slices
256 x 256 x 9

1S¥Y Health | Do Geften e « UCLAMII
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Radiology to pathology matching

R eas

David Geffen
School of Medicine 42 UCL A M | |

IIIIIIIIIIIIIIIIIIIIIIIIII

Health




Matching MRI to pathology: Challenges

 Deformation of resected tissue st e
. Devascularization i ===
- Difficulty orientating amorphous specimens e b Wt

. . TR Mold image
Tissue shrinkage - spcifcaton
Thin-sectioning compression, iy ) o
A mo image

fixatio

* Misalignment of macroscopic tissue sections <> % \i %
. x o . . acro Mold- .Co- :
« Subdivision of macro tissue sections Fisn8 Sl

microtomy,

prepared forlight microscopy e

_________________ > face
image

Slice thickness mismatch between sections Embedding, Block
| imaging

Non-standard modifications to enhance
registration accuracy

— histology
' ———————————————————————————————————————————————————— > image

Stained histology sections

UCLA H alth David Geffen Alyami, W., Kyme, A. & Bourne, R. Histological Validation of MRI: A Review of Challenges in Registration of 43 UCLA I\/l | |
e School of Medicine Imaging and Whole-Mount Histopathology. J Magn Reson Imaging 55, 11-22 (2022).
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Registering in vivo and histopathology images




Multimodal data fusion
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Motivation

Genome

Transcriptome

Proteome

Metabolome

Microbiome

Epigenome

Exposome

N
| Social graph

Biosensors
Imaging

_
UCLA Health David Geffen Topol EJ. Individualized medicine from prewomb to tomb. Cell. 2014 Mar 27;157(1):241-53, 46 UCL A M | |
School of Medicine
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Basic types of multimodal fusion

Combination of data (CoD): Combination of interpretations (Col):
Combine features across sources to Classify data from each source independently
generate a single feature vector for then aggregate the results

classification

Fusion of
data

Fusion of
Interpretations

U C L A H 1 th ‘ David Geffen Lee G et al. A knowledge representation framework for integration, classification of multi-scale imaging and non-
ea g imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and 47
School of Medicine

histology. ISBI 2009 (pp. 77-80).




General approach

Data pre- Feature Feature fusion

processing representation

-,

R4

 Extract features » Transform i « Combine
from different features into a i features into a
data sources 1 common ! single
i representation i representation
\ y M e / \ Y

Y[e¥.Y Health ‘ Sl ot Madicine

Classification

 Feed combined
feature set into
classifier

« UCLAMI|
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Examples of approaches

Resampling Weighting
g h 0 i ) Direct fusi
N Dec|s|on' re usion
representation
-
" ™
ORIGINAL MULTI- R Kernel 4 N
MODAL DATA | representation | Co-association matrix
fusion *
[ . . B \_ y
Low-dimensional
— X
representation /
\ / - J
Structural fusion INTEGRATED MULTI-
MODAL PREDICTOR

Knowledge Representation Knowledge Fusion

THE HSU LAB

David Geffen Viswanath SE, et al, Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data:
UCLA Health School of Medicine concepts, workflow, and use-cases. BMC medical imaging. 2017 Dec 1;17(1):2. 49 UCLA I\/l | |
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Examples of approaches

Multimodal DBM

Image-specific DBM  Text-specific DBM

900000
RO NG SN R PN

2)
ht

Text
i

UCLA H lth David Geffen Srivastava N, Salakhutdi RR. Multimodal | [ ith d bolt hi NeurlPS 2012 2222-2230 50 UCLA I\/l | |
ea School of Medicine rivastava N, Salakhutdinov RR. Multimodal learning with deep boltzmann machines. Neur (pp. - )-
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Examples of approaches

Multi-modal Patch Patch-level Image-level
input images extraction feature learning classifier learning
2@][IxIxI] 2K@|wxwxw| K@Fg
| v) : 1 MRI J=1:K} [ Dt lovel )
| 4 i E i atch-leve |
i == E ~~~~~~~~~~ E O] O O O i i SVM learning |
i undh N SRR oNe | s E ;
a b . _NOO——- > s i i s
| PN waHIE oNe | i i i
i i Nt gl s lo lo O O i E | v | E
: M1 o ] m={MRLPET} L f i Spatially distributed !
i Vk E‘ {Vk }k=]-K { - }"1={MR|.PET} : f E { k }k-lK E “mega_patch” E
R T P Y eRrT | construction |
5 Y OO rer=J O h | i i
i SR SN ofje i § i i
B GRS 1 gk | I
E MR _—115 ,,,,,, 45/ Ak O O E i Weighted ensemble i
i Vk L i SO ) O i {  SVM classifier |
: T iR} : : i 1 ' !
v . Preprocessor  Multi-modal DBM } L e

-----------------

So -
--------------------------------------------------

------------------------

THE HSU LAB

David Geffen
School of Medicine

Suk HI et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI

diagnosis. Neurolmage. 2014 Nov 1;101:569-82. 51
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Examples of approaches

Domain 1 Data Domain 2 Data
subj 1 | | | BN subj 1
subj 2 subj 2
subj 3 subj 3
subj 4 subj 4
subj ... subj
subj n i G subj n
T O R R NIV
¢ 8¢ S $ Y
C
Original Canonical
Variables Vector Canonical Variate
o, £ <33 : 2o 9 i
Var 1 X (04 C Var1 © Canonical
+ @ Correlation
Var 2 X 102 = e >
Var 2 3
" Var3 x (0]} =
_ o+ o)
P ot C
p x (04 T 8
e
=
©
+ £
o
Q >
Var p X (03 Var p Domain 2 Canonical Variate

UCLA Health ‘ SDgl‘:i;jo?::fh?lgdicine https://arxiv.org/ftp/arxiv/papers/1812/1812.02598.pdf 50 AM | |
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Ongoing efforts & concluding
thoughts
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Integrated Diagnostics Shared Resource

Mission: Catalyze innovative research and tool development through data integration
and curation to improve early detection, diagnosis and treatment of cancer

By systematically collecting With the goal of

@ Clinical and Outcomes Data 1. Developing and validating of novel Al/ML
: algorithms and imaging biomarkers to assist
@ Imaging Data .. . . .
clinicians with cancer diagnosis and treatment

x Pathology Data 2. Generating new biological knowledge through
the lens of imaging
é Prospective biospecimens

3. Discovering actionable information that can

% Multi-omics Data inform clinical management of patients

David Geffen
School of Medicine 54 UCL A M | |
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Functions of the shared resource

d Geff
v IDx | Prostate DATA PORTAL
Related Links ~  Data Request Logged in as: whsu | Log Out
Quadrant Clock Face Apex to Base Pri
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ther n
1,11,19,232535
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Data and specimen Annotation and data Data delivery and
collection curation knowledge discovery
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Database architecture

Electronic
health record

Biospecimen
bank

Other data
sources

Radical
prostatectomy
cases

Historical MR in-bore
mpMRI biopsy

Automated

retrieval

Manual

abstraction

IDx Shared
Resource

Data

management

Annotation

Retrieval & QC




Example: IDx Prostate

(Tan N, Radiology, 2016)

(Priester A, J Urology, 2017)

"

Resection cases N = 750
Archived images N = 741
Annotations N = 491 MR-guided Targeted Biopsy N = 254
Archived Images (biopsy + pre) N = 219
Annotations (pre) N = 150
Banked specimens N = 219

(Wu HH, JMRI, 2019)

Historical mpMRI cases N = 4,071

Ex vivo cases N=60+



Precise MRI| to whole mount correlation

ADC Map (DWI)

Coronal (T2W) DCE MRI

Sagittal (T2W)

mpMRI images Radiology Sector Map WM images Pathology Sector Map

Wibulpolprasert P et al, AJR, 2019



Positive Rate : ; False Positilive Rate

39 ROIs

Fisher's Exact test op 0%Tzp
All p<0.001 |

2l
_—

Slide courtesy of Grace Kim, PhD (UCLA)
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(a) Fiducials

3T MRI with 15-ch knee cail

David Geffen Zhang, Z., Wu H.H., .... Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion- e
UCLA Health . . Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology 60 UCLA I\/I | |
School of Medicine https://dx.doi.org/10.1148/radiol.2020192330
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— Registered
atien Ex-vivo Prostate MRI - i
f{ spec"ic S H Whole-mount Hlstopath0|09y

Annotation transfer 't
—_‘ - A.
(Cancer, Benign ROIs) [ad)

Prostate Segmentation Diffusion Relaxtion Correlation Diaital Patholo
Spectrum Imaging ’ -

' " N " Tissue Compartment
| .me [ T2-Diffusion Signal Spectrum J [ Segmentation J
n-vivo

‘ spectral peaks (A,B,C)

Signal Signal Signal ( . "‘I )
[ComponentA Component B |Component CJ Epithelium| Stroma | Lumen

MRI Signal Components —Digital Pathology
Tissue Compartments Comparison

David Geffen Zhang, Z., Wu H.H., .... Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion- ——
UCLA Health . . Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology 61 UCLA I\/l | |
School of Medicine https://dx.doi.org/10.1148/radiol. 2020192330
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Health |

David Geffen
School of Medicine

DR-CSI signal component fraction maps

0.5

0.4

10.3

0.2

Zhang, Z., Wu H.H., .... Enzmann, D. (2020). Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-
Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology Radiology
https://dx.doi.org/10.1148/radiol.2020192330

62

Digital Histopathology: Tissue Compartment Segmentation

! | Stroma
¥ Bl Epithelium

Lumen

THE HSU LAB
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Radiomic analysis to predict outcomes

MRI slices with annotations (red: tumor; green: prostate) Strata High-risk Low-risk
Shape features 1.00 -
* Major axis length N o
» Maximum 3D Diameter > —— o ’ —— f
+ Surface volume ratio =
. 075
o 2 .
T2w Combine <] R -
slices to o s
extract Intensity distribution features s
o features from | | nMoan g 050~ -
Normalization and 3D : >
. : . * 10 percentile »
intensity artifacts R o
" * Range 2
correction . % 0254
O p = 0.0053
Texture features
+ Gray level co-occurrence matrix 0.00 ‘ ' '
ADC * Gray level run length matrix 0 1000 2000 3000
* Gray level size zone matrix R Time in days
° 95|83 .
2221 Number at risk
% w= 59 25 10 3
n = 44 20 7 0
0 1000 2000 3000
Time in days

1S¥Y Health | Do Geften e » UCLAMI|
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Current domains

Prostate Kidney Liver

* 960+ resection cases * 1,020+ retrospective RCC « 1,700+ ablation cases
* 64 ex vivo cases Ccases * 110+ CT/US-guided

» 5,000+ mpMRI cases . 8_O+ QT/US-guided biopsies
- 310+ MR-guided biopsies biopsies

Lung Breast

3,500+ screening cases « 240+ US-guided biopsies
« 990+ CT-guided biopsies

Y[e 7.8 Health ‘ Sohenl ot Madicine o



Patient T ————————— Data —————————— Disease

data integration trajectory
inputs modeling interpretation outcomes
radiogenomic interpretability « progression-free
mapping methods survival

 overall survival

o
o - i) T e G T G
Imagin
9ing :*: B] > E@ 8 Q E@ 8 O > probability ... p=0028
of survival
L imagin |
molecular g JImng m%s ing séﬁiiiiy

years
molecular

THE HSU LAB
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The Cancer Genome Atlas (TCGA) ====
n = 528 GBM patients
microarray

untreated, primary tumors

The Cancer Imaging Archive (TCIA) mwuns
n =262 GBM patients
multiple image modalities

Y[e¥.Y Health ‘ Sl ot Madicine

* n =109 paired, radiogenomic

samples

* gene expression profile and pre-

operative MR imaging

< UCLAMI|
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Radiogenomic neural network

- feature Training:
Input generation g
7~ output — ~_encode decode =
o - - @ - -7 @
gene : : i transt.criptoglic expresgs?gﬁ : : : Bzcggstructed
expression | g M o MRI trait autoencoder : N | @ | expression
IOprofile @ o : ‘:I U ) profile | gy ® @ nrofile
® 9 = X O : CRC,
LJ - @ : o
¢ w ' transfer weights
o — .+ freeze
. : R ARt
[
fine tune o M)
X radiogenomic oy oresion (@] @ .
\ 4 model pprofile .-»,-»: (@) MRItrait
prediction of one or O g —
more imaging traits g
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a patient's gene

expression
profile
: k
hypoxia gene > maéeﬁg O
set expression |@
profile
O

{

= expression value (gene in gene set)
= zero value (gene not in gene set)

- mask the input



a patient's gene

expression
profile
push through model
O —

; ked record
hypoxia gene mas : MRI trait
POt = expregs‘?gﬁ :-»:-b *@@ MRItrait - prediction

profile
09 -

{

= expression value (gene in gene set)
= zero value (gene not in gene set)
®- MRI trait prediction based on gene set

- mask the input
* measure the output



a patient's gene

expression
profile
push through model
O —
record repeat for
hypoxia gene masked O . MRI trait each
oSt > expregﬁgﬁ "’:" (@) MRitrait = prediction =P patient =P calculate AUC
profile
00 —

[

= expression value (gene in gene set)
= zero value (gene not in gene set)
O MRI trait prediction based on gene set

* measures performance of model when only using genes from a gene set
« use AUC as strength of association



class saliency™ ' change in inputs
that affect the positive class

Ch

—

:

gene
saliency |2
profile

@ MRI trait

QQ*QQ

[

N——

= saliency value
o MRI trait prediction

- attach weights to genes based on their importance in predicting a class label

T Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. "Deep inside convolutional networks: Visualising image
classification models and saliency maps." arXiv preprint (2013)
T T Kotikalapudi, Raghavendra, et al.“keras-vis.” (2017)



knowledge base

g”
—
—_—

class saliency: change in inputs
that affect the positive class

‘\ '
c ecord
, k genes apply gene set
for a patient: sal%me O ) gene {)an Y .
B |:| MRI trait = =p Dysaliency y,  enric ment analysis
profilg O \Slgl|luegscy values (GSEAT) !
@ —

N——

= saliency value
o MRI trait prediction

- attach weights to genes based on their importance in predicting a class label
- use of GSEA to determine what gene sets (pathways, biological processes etc.) were at the top of
ranked genes



Model interpretation using gene masking

TMW + Gd

 high grade, aggressive tumor
- abnormal, leaky blood vessels
- disrupted blood-brain barrier



Model interpretation using gene masking

transcriptomic drivers

MRI trait theme gene set (collection*, query) AUC AP see also
enhancing growth/death  growth (GO, PTEN) 0.86 0.84
sensory organ development (GO, EGFR, KCNK3) 0.85 0.84 [JDB14, GCH13]
immune system IL2/STATS5 signaling (H) 0.77 0.76
complement system (H) 0.79 0.75
activation of immune response (GO, PTEN) 0.90 0.89
leukocyte & lymphocyte activation (GO, PIK3R1) 0.86, 0.85 0.85, 0.83
immune effector process (GO, PIK3CA) 0.87 0.84
hormones early & late responses to estrogen (H) 0.79, 0.78 0.73,0.73
response to steroid hormone (GO, RBI) 0.88 0.88
regulation of hormone levels (GO, PARK2) 0.87 0.84
ECM related to ECM proteins (C, ECM) 0.77-0.84 0.73-0.76 [DNWOS8]
apical junction (H) 0.80 0.75
vasculature heme metabolism (H) 0.77 0.65
vasculature & heart development (GO, LTBP1) 0.81, 0.78 0.80, 0.77 [JDB14]
kinases activity multiple (GO, EGFR, LTBP1, KCNK3) all0.87 all0.85 [JDB14, GCH13]

- high grade, aggressive tumor identified the most predictive gene sets

- abnormal, leaky blood vessels gene sets are related to growth, vasculature, immune system
- disrupted blood-brain barrier processes, and involved EGFR

gene sets associated with prior radiogenomic work

repeated analysis for all VASARI traits



Using class saliency to predict progression

- identify radiogenomic traits using class imaging trait radiogenomic trait
saliency
Kaplan Mei val proportion of non-contrast prediction of nCET involved
apian vieier survival curves enhancing tumor (nCET) neural (NL) subtype genes
- radiogenomic traits were able to o =
differentiate progression free | == nCET < 1/3 | m= nCET + NL not enriched
survival better than imaging traits o rs il ool NGET + DL gnriched
alone
PFS p=0.77 PFS p = 0.022
probability *>° ] probability %->° ]
0.25 A 0.25 A
0.00 | ' 0.00 A
0 1' 2 3 4 5 6 0 i 2 3 4 5 6
years years
Number at risk Number at risk
=198 19 4 3 2 0 0 m= 1103 19 5 3 2 0 0
=lss & 2 0 0 0 0 4 10 8 1 0 0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6




Concluding thoughts (1/2)

A lot of biological information can be extracted from MRI

- Incorporating information across biological scales and modalities can lead to improved
predictions of prognosis and treatment response

 Different modalities carry different kinds of information

* Optimal techniques for normalization, registration, and fusion are open
challenges

- Driven by the increasing availability of multimodal datasets
- Need high quality annotations and data collection workflows
* Need better model validation tools

- Further investigation into how multi-modal features relate, model interpretability

SDgl‘::;jolG:fﬁ I\?Igdicine ° UCLAM | |
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Concluding thoughts (2/2)

» Desiderata of a good multimodal learning model (Srivastava and Salakhutdinov)
- Similarity in the representation space implies similarity of the corresponding concepts
- Robust to missing information / fill-in missing modalities given observed ones

* Need better model validation tools
- Further investigation into how multi-modal features relate, model interpretability

« Additional resources

- Survey and taxonomy of multimodal learning (Baltrusaitis et al,
nttps://doi.org/10.1109/TPAMI.2018.2798607)

- Recent special issue on multimodal data fusion in IEEE Journal of Biomedical and Health

nformatics
nttps.//ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8949677

Health
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Thank you

William Hsu, PhD
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