M229: Advanced Topics in Magnetic Resonance Imaging

Spring 2023: 4 Units
Lectures: Tue/Thu 10:00 AM – 11:50 AM
Bauer Auditorium, CHS BH-173
https://mrrl.ucla.edu/pages/m229

Instructor: Holden Wu, PhD (holdenwu@mednet.ucla.edu)

Teaching Assistants: Shu-Fu Shih, Timoteo Delgado

Office: 300 UCLA Medical Plaza, Suite B119

Course Description: This course will explore recent MRI developments that 1) have had high impact on the field, 2) involve novel pulse sequence design or image reconstruction, and/or 3) enable imaging of anatomy or function in a way that surpasses what is currently possible with any other modality. Simulations and programming exercises in MATLAB will provide hands-on experience for students. Students will propose and carry out a final project along current directions of advanced MRI research.

Prerequisites: This course is a follow-up to M219 (Principles and Applications of MRI) and is meant for students interested in pursuing research related to the development or translation of new MRI techniques.

Course Schedule:

1.	April 4, Tue	Introduction – Advanced MRI Techniques and Applications
2.	April 6, Thu	Pulse Sequences – Rapid GRE
3.	April 11, Tue	Pulse Sequences – RARE / Bloch Simulation MATLAB demo
4.	April 13, Thu	Pulse Sequences – Extended Phase Graphs (EPG) / MATLAB demo
5.	April 18, Tue	RF Pulse Design – Adiabatic Pulses
6.	April 20, Thu	RF Pulse Design – Excitation k-space / MATLAB Demo
7.	April 25, Tue	Fast Imaging – EPI, PROPELLER
8.	April 27, Thu	Project Discussion
9.	May 2, Tue	Fast Imaging – Non-Cartesian Sampling I
10.	May 4, Thu	Fast Imaging – Non-Cartesian Sampling II
11.	May 9, Tue	Image Reconstruction – Partial k-space (by Dr. Kyung Sung)
12.	May 11, Thu	Image Reconstruction – Parallel Imaging (by Dr. Kyung Sung)
13.	May 16, Tue	Image Reconstruction - Compressed Sensing (by Shu-Fu Shih)
14.	May 18, Thu	Image Reconstruction – Deep Learning (by Shu-Fu Shih)
15.	May 23, Tue	Managing Motion in MRI
16.	May 25, Thu	Susceptibility and Conductivity Imaging (by Dr. Jingwen Yao)
17.	May 30, Tue	Advanced Application Topic – TBD by Dr. Jingwen Yao
18.	June 1, Thu	Advanced Application Topic – TBD by Dr. Anthony Christodoulou
[ISMRM: June 3 – June 8]		
19.	June 12-16,	Final Project Presentations

Course Assignments:

- Reading book chapters and research papers
- Programming assignments x2 (MATLAB)
- Final project presentation (1-page abstract and 10+10 min oral presentation)

Grading Structure:

• Participation (10%), Homework (30%), Final Project (60%), Extra Points.

Reading List:

- Handbook of MRI Pulse Sequences. M. A. Bernstein, K. F. King, and X. J. Zhou. Elsevier Academic Press, 2004. ISBN-13: **978-0120928613**.
- Research papers as assigned