Project Discussion

M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2023.04.27

Department of Radiological Sciences David Geffen School of Medicine at UCLA

Homework #1 and #2

- Homework 1 due on 4/28 Fri by 5 pm
- Homework 2 due on 5/5 Fri by 5 pm
- Office Hours
- Submit your answers (PDF) and MATLAB code by email

Class Survey

• Pace

- A. too fast
- B. a bit fast
- C. just right
- D. a bit slow
- E. too slow

Class Survey

- Office hours (instructor or TAs)
 - A. helpful
 - B. not helpful
 - C. haven't gone yet

Class Survey

• Final project

- A. have a topic
- B. thinking about some topics
- C. need some more inspiration
- D. no clue

MRI Research

Technical Developments

Physics Contrast mechanisms Mathematical models Hardware Data acquisition Data reconstruction Data processing Quantitative analysis Data integration Software

Clinical Applications

Anatomical imaging Functional imaging Multi-modal imaging Quantitative imaging

for Diagnosis / screening Treatment planning Procedural guidance Treatment assessment Monitoring

Course Topics

- Pulse Sequences
- RF Pulse Design
- Fast Imaging Trajectories
- Parallel Imaging
- Compressed Sensing
- Deep Learning Recon
- Motion in MRI
- Susceptibility Imaging

- Invited Speakers
 - Neurological MRI
 - Cardiovascular MRI

Final Project

- ~6 weeks; start thinking now!
 - come to office hours
- Can be your own research
 - incorporate course topics
- Can be from list of ideas
 - can combine several ideas
- Components
 - Proposal (1 page), due 5/8 Mon by 5 pm
 - Abstract (1 page), due 6/8 Thu by 5 pm
 - Presentation + Q&A, 6/13 Tue and 6/15 Thu

- Pulse sequences
 - bSSFP catalyzation
 - bSSFP banding artifact reduction
 - Design of variable flip-angle TSE
 - Simulation of diffusion-weighted SSFP
 - RF + seq simulator (Bloch, EPG)
 - MR fingerprinting
 - Motion and flow encoding
 - Gradient waveform optimization

- RF pulse design
 - Low SAR / wide bandwidth adiabatic pulse
 - Velocity selective RF pulse
 - 2D excitation RF pulse
 - Spectral-2D spatial pulse design (e.g., fat suppression + 2D excitation)
 - Low SAR multi-band RF pulse

• Fast imaging

- Trajectory design (EPI, PROP, spiral, etc.)
- Gradient waveform optimization
- Fast 3D re/gridding (or nuFFT) recon
- Gradient measurement / calibration
- Off-resonance correction
- Motion compensation
 - Self navigation
 - Model-based reconstruction

Image reconstruction

- Coil combination (preserve phase, etc.)
- Parallel imaging (e.g., GRAPPA vs. SENSE)
- Sparsity and low-rank constraints
- k-t methods
- Image analysis
 - Measure/reduce geometric distortion in DWI
 - B₁+ mapping with improved spatial interpolation
 - Denoising
 - Multi-component tissue signal modeling

• Deep learning / machine learning

- Image enhancement / reconstruction
- Super-resolution MRI
- Texture analysis for multi-parametric MRI
- Prediction models for disease diagnosis
- Image segmentation
- Contrast synthesis

Quantitative imaging

- Relaxometry (T₁, T₂, T₂* mapping)
- Diffusion
- Perfusion
- Fat/water
- Temperature
- Tissue stiffness
- Acquisition and signal modeling/fitting

Final Project

- Proposal due 5/8 Mon by email
 - Template on course webpage
- Ask about sample datasets
- Come to office hours!

Thanks!

Holden H. Wu, Ph.D. <u>HoldenWu@mednet.ucla.edu</u> http://mrrl.ucla.edu/wulab