Susceptibility and Conductivity MRI

Jingwen Yao M229 Advanced Topics in MRI May 25, 2023

Outline

Phase MRI

Susceptibility MRI Contrast

Susceptibility MRI Processing

Susceptibility MRI Applications

Conductivity MRI

Magnitude

Phase

	Encoding	Data	Applications
Susceptibility imaging	None	Raw phase	Iron, calcium, myelin imaging
Conductivity imaging	None	Raw phase	Tumors, ischemic lesions
MR thermometry	None	Phase shift	MR-guided procedures
Flow imaging	Velocity-encoding bipolar gradient	Subtracted phase data from opposite encodings	Cardiac flow, CSF flow
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially	Subtracted phase data from opposite encodings and combined across three directions	Angiogram, venogram, aneurysm
Elastography	Motion-encoding gradients	Phase differences	Liver fibrosis, brain

	Encoding	Data	Applications
Susceptibility imaging	None	Raw phase	Iron, calcium, myelin imaging
Conductivity imaging	None		
MR thermometry	None	ANAC.	19 V C.
Flow imaging	Velocity-encoding bipolar gradient		
Phase contrast angiography	Bipolar gradients applied along the and z axes sequen		
Elastography	Motion-encoding gradients	Constant of the second	

	Encoding	a
Susceptibility imaging	None	
Conductivity imaging	None	
MR thermometry	None	0 1300 S/m
Flow imaging	Velocity-encoding bipolar gradient	b Para Para
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially	
Elastography	Motion-encoding gradients	0 1300 S/m

	Encoding	Data	Applications
Susceptibility imaging	None	a	T6:35.0
Conductivity imaging	None		T1 69 9
MR thermometry	None		
Flow imaging	Velocity-encoding bipolar gradient		
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially		
Elastography	Motion-encoding gradients		

	Encoding	Data
Susceptibility imaging	None	Raw phase
Conductivity imaging	None	Raw phase (B ₁)
MR thermometry	None	Phase shift
Flow imaging	Velocity-encoding bipolar gradient	Subtracted phase data fro opposite encodings
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially	Subtracted phase data from opposite encodings and opposite across three directions
Elastography	Motion-encoding gradients	Phase differences

	Encoding	(a) ά°	(b)
Susceptibility imaging	None		
Conductivity imaging	None		G _{SS} G _{FE}
MR thermometry	None		(in) (in)
Flow imaging	Velocity-encoding bipolar gradient	(C)	G _{PE} Speed
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially	Speed Speed	(d)
Elastography	Motion-encoding gradients	Gre	MIP

	Encoding	Data	Applications
	а	b	c
Susceptibility imaging	Mechanical	Wave Image	Elastogram
Conductivity imaging	Driver	and the second sec	12 - Carlos
MR thermometry			Cart A
Flow imaging			
Phase contrast angiograph	Conventional MR In	nage -70 0 +70 Displacement (μm)	0 4 8 Shear Stiffness (kPa)
Elastography	Motion-encoding gradients	Phase differences	Liver fibrosis, brain

	Encoding	Data	Applications
Susceptibility imaging	None	Raw phase	Iron, calcium, myelin imaging
Conductivity imaging	None	Raw phase (B ₁)	Tumors, ischemic lesions
MR thermometry	None	Phase shift	MR-guided procedures
Flow imaging	Velocity-encoding bipolar gradient	Subtracted phase data from opposite encodings	Cardiac flow, CSF flow
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially	Subtracted phase data from opposite encodings and combined across three directions	Angiogram, venogram, aneurysm
Elastography	Motion-encoding gradients	Phase differences	Liver fibrosis, brain

Susceptibility MRI – source of contrast

Susceptibility MRI – source of contrast

Susceptibility-weighted imaging

Quantitative susceptibility mapping

paramagnetic $\chi > 0$ Air Iron, gadolinium, copper, manganese **Deoxyhemoglobin** Water susceptibility Most of the biological tissues **Myelin** Calcification χ < 0 diamagnetic

Susceptibility MRI – Deoxyhemoglobin

Iron Perl's Stain

GRE Magnitude Image

GRE Phase Image

Iron Perl's Stain

GRE Magnitude Image

GRE Phase Image

Susceptibility MRI – Calcification

Tissue validation

Ferumoxytol phantom

$$\Delta B_{\rm int}(\overrightarrow{r}) = B_0 \cdot \int_{-\infty} \widetilde{\chi}(\overrightarrow{r'}) \cdot d_z(\overrightarrow{r} - \overrightarrow{r'}) d^3 \overrightarrow{r'}$$

Review: Deistung et al. NMR Biomed 2017; Schweser et al. Z Med Phys 2016

Review: Deistung et al. NMR Biomed 2017; Schweser et al. Z Med Phys 2016

$$\Delta B(\vec{r}) = B_0 \int_{-\infty}^{\infty} \chi(\vec{r'}) d(\vec{r} - \vec{r'}) d^3 \vec{r'}$$

$$\Delta B = B_0 (\chi \otimes d) \quad \text{Known}$$
Measured Unknown
$$\mathbf{FT}$$

$$\Delta B(\vec{k}) = B_0 [\chi(\vec{k}) d(\vec{k})]$$

$$d(\vec{r}) = \frac{1}{4\pi} \frac{3\cos^2(\theta) - 1}{|\vec{r}|^3}$$

$$d\left(\vec{k}\right) = \frac{1}{3} - \frac{k_z^2}{\left|\vec{k}\right|^2}$$

$$\Delta B(\vec{k}) = B_0[\chi(\vec{k})d(\vec{k})]$$

$$d\left(\vec{k}\right) = \frac{1}{3} - \frac{k_z^2}{\left|\vec{k}\right|^2}$$

Susceptibility MRI – Processing

QSM - Processing

1. Image acquisition

T₂*-weighted sequence

QSM - Processing

2021 ISMRM QSM education talk

Special issue review article

Received: 11 November 2015,

Revised: 14 June 2016,

Accepted: 18 July 2016,

Published online in Wiley Online Library: 13 September 2016

(wileyonlinelibrary.com) DOI: 10.1002/nbm.3601

An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping

Simon Daniel Robinson^a*, Kristian Bredies^b, Diana Khabipova^{c,d}, Barbara Dymerska^a, José P. Marques^{c,d} and Ferdinand Schweser^{e,f}

Magnitude

Phase

Single Channel Single Channel Unwrapped Phase

Single Channel QSM

QSM

Magnitude

Single Channel Multi Channel Phase Phase

Unwrapped Phase

QSM

Measured phase (single coil)

 $\phi(\vec{r}, TE) = \phi_0(\vec{r}) + \phi_{total}(\vec{r}, TE)$

Transceive phase

spatially varying phase offsets exist between receive coils

Robinson S et al., NMR Biomed, 2015

QSM - MPCP-3D

Steps:

unwrap each echo phase

$$\varphi_j^{\mathsf{0}}(\vec{r}) = \frac{\varphi_j(\vec{r}, TE_2)TE_1 - \varphi_j(\vec{r}, TE_1)TE_2}{TE_1 - TE_2}$$

- create 3D phase offset map for each coil using each unwrapped echo
- smooth with 5x5 median filter
- subtract 3D phase offset map from phase image of each channel
- weighted mean

<u>Advantages:</u>

- works where there is no signal overlap between receivers
- no need for reference coil
- also works using a separate low-resolution scan

QSM - Phase unwrapping

QSM - Phase unwrapping

QSM - Background field removal

Journal of Magnetic Resonance **148**, 442–448 (2001) doi:10.1006/jmre.2000.2267, available online at http://www.idealibrary.com on **IDE**

High-Precision Mapping of the Magnetic Field Utilizing the Harmonic Function Mean Value Property

Lin Li and John S. Leigh

Department of Biochemistry and Molecular Biophysics, and Metabolic Magnetic Resonance Research & Computing Center, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received June 15, 2000; revised November 20, 2000

The spatial distributions of the static magnetic field components and MR phase maps in space with homogeneous magnetic susceptibility are shown to be harmonic functions satisfying Laplace's equation. A mean value property is derived and experimentally confirmed on phase maps: the mean value on a spherical surface in space is equal to the value at the center of the sphere. Based on this property, a method is implemented for significantly improving the precision of MR phase or field mapping. Three-dimensional mappings of the static magnetic field with a precision of $10^{-11} \sim$ 10^{-12} T are obtained in phantoms by a 1.5-T clinical MR scanner, with about three-orders-of-magnitude precision improvement over the conventional phase mapping technique. *In vivo* application of the method is also demonstrated on human leg phase maps. $\circ 2001$

Key Words: field mapping; harmonic function; mean value property; phase; SMV.

aging, we generate field maps with high precision up to $10^{-11} \sim 10^{-12}$ T. Such a measurement precision is comparable with that of a superconducting quantum interference device (SQUID) for the magnetic field measurement (17). Feasibility with *in vivo* applications is also demonstrated.

THEORY

In free space or regions without susceptibility heterogeneity and no macroscopic currents, all the components of the static magnetic field **H** satisfy Laplace's equation, i.e., $\nabla^2 \mathbf{H}_i = 0$, i = x, y, z, or $\nabla^2 \mathbf{H} = 0$, which can be easily derived by setting the temporal derivative of the magnetic field in the electromagnetic wave equation (18) to zero. Therefore, local magnetic induction (4, 19) experienced by a nucleus, (1 + $\chi/3)$ *H*, also satisfies Laplace's equation. Since the spatial

RESHARP

VSHARP

HARPERELLA

PDF

Dipole inversion

Local field

QSM

ill-posed inversion problem Noise amplification near the zero cone surfaces

COSMOS: calculation of susceptibility using multiple orientation sampling

COSMOS: calculation of susceptibility using multiple orientation sampling

QSM Dipole Inversion: iLSQR

iLSQR: iterative method solving least square using the orthogonal and right triangular decomposition

Dipole kernel

$$\psi(\mathbf{k}) = D_2(\mathbf{k}) \cdot \chi(\mathbf{k})$$

Field perturbation

Susceptibility distribution

1st order derivative

$$\psi'(\mathbf{k}) + \left[2\left(k_x^2 + k_y^2\right)k_z/k^4\right]\cdot\chi(\mathbf{k}) - D_2(\mathbf{k})\cdot\chi'(\mathbf{k}) = 0$$

 $D_3(\mathbf{k})\cdot\chi(\mathbf{k})+D_2(\mathbf{k})\cdot FT[i\cdot r_z\chi(\mathbf{r})]=FT[i\cdot r_z\psi(\mathbf{r})]$

$$egin{aligned} \chiig(\mathbf{k}ig) &= D_2(\mathbf{k})^{-1}\cdot\psiig(\mathbf{k}ig), \ \ ext{when} \ \ D_2(\mathbf{k}) &\geq arepsilon \ \chiig(\mathbf{k}ig) &pprox D_3(\mathbf{k})^{-1}\cdot FT[ir_z\psi(\mathbf{r})], \ \ ext{when} \ \ D_2(\mathbf{k}) < arepsilon \end{aligned}$$

Where: $D_3(\mathbf{k}) = (k_x^2 + k_y^2)k_z/\pi k^4$

QSM Dipole Inversion: iterative inversion methods with regularization

Recon problem
$$\arg \min_{\chi} \frac{1}{2} \| W(F^H DF\chi - \Phi) \|_2^2 + \alpha \Omega(\chi)$$
Data consistency termRegularization
termNonlinear variant $\arg \min_{\chi} \frac{1}{2} \| W(e^{iF^H DF\chi} - e^{i\Phi}) \|_2^2 + \alpha \Omega(\chi)$

Method	Data consistency term	Regularization term
STAR-QSM (STreaking Artifact Reduction for QSM)	Linear L2-norm	Total variation
FANSI (FAst Nonlinear Susceptibility Inversion)	Nonlinear L2-norm	Total variation
HD-QSM (Hybrid Data fidelity)	Linear L1+L2-norm	Total variation
MEDI (Morphology Enabled Dipole Inversion)	Linear L1-norm	L1 norm of morphologically weighted gradients

QSM Dipole Inversion: iterative inversion methods with regularization

Parameter optimization

Yao J et al., NeuroImage, 2022

QSM Dipole Inversion: single step methods

QSIP

Quantifying Susceptibility by Inversion of a Perturbation model

$$\chi_{1}^{*} = \arg \min_{\chi_{1}} \left[\lambda_{1} | W \circ (\Delta B - \Delta (K_{s} * \chi_{1})) |_{1} + \lambda_{2} | M \circ (B - (K_{s} * \chi_{1} + B_{e})) |_{2}^{2} + \lambda_{3} | M^{C} \circ (\chi_{1} + \chi_{0}/\delta) |_{2}^{2} \right]$$

Simultaneously estimating the external susceptibility outside the brain

SSTV, SSTGV

Single Step QSM with Total Variation / Total Generalized Variation penalties

$$\min_{\chi} \frac{1}{2} \sum_{i} \left| \left| M_{i} F^{-1} H_{i} D F \chi - M_{i} F^{-1} H_{i} F \Psi(\phi) \right| \right|_{2}^{2} + R(\chi)$$

Perform VSHARP background field removal and dipole inversion in a single step

QSM Dipole Inversion: deep learning-based methods

Chen Y, NeuroImage, 2020; Yoon J, NeuroImage, 2018; Jung W, NeuroImage, 2020 Gao Y, NMR in Biomed, 2020 Gao Y, NeuroImage, 2<u>022</u>

QSM: Anisotropic Susceptibility

QSM: Susceptibility source decomposition

Chen J et al., NeuroImage, 2023

QSM: Susceptibility source decomposition

Α

В

Susceptibility MRI – SWI

phase-weighted magnitude imaging

paramagnetic $\chi > 0$ Air <u>**Iron**</u>, gadolinium, copper, manganese **Deoxyhemoglobin** Water susceptibility Most of the biological tissues Myelin Calcification χ < 0 diamagnetic

Susceptibility MRI – SWI

phase-weighted magnitude imaging

Higher contrast, more artifacts

QSM/SWI – Clinical applications

Multiple Sclerosis

Traumatic Brain Injury

QSM/SWI – Clinical applications

Brain Tumor

Liu C, et al JMRI 2015 Kim HS et al AJNR 2009 Lupo et al. IJROBP

QSM/SWI – Clinical applications

Parkinson's Disease

Conductivity imaging (Electrical Properties Tomography)

- **Electrical conductivity** (*σ*): the ability of a material to transport charges, or equivalently, to carry an electric current.
- **Electrical permittivity** (*ɛ*): the ability of a material to rotate molecular dipoles and trap/store charge; hence the degree to which a material becomes polarized when placed in an electric field.

Helmholtz equation

$$-\nabla^2 \mathbf{H} = \frac{\nabla \kappa}{\kappa} \times [\nabla \times \mathbf{H}] + \omega^2 \mu \kappa \mathbf{H},$$

H: Magnetic Field κ : complex permittivity $= \epsilon - i(\sigma/\omega)$ μ : magnetic permeability

$$-\nabla^{2}\mathbf{H} = \frac{\nabla \kappa}{\kappa} \times [\nabla \times \mathbf{H}] + \omega^{2} \mu \kappa \mathbf{H},$$

Piecewise constant κ
Constant μ

$$\kappa(\mathbf{r}) = \frac{-1}{\omega^{2}\mu_{0}} \frac{\nabla^{2}H^{+}(\mathbf{r})}{H^{+}(\mathbf{r})},$$

$$\sigma = \frac{1}{\omega\mu_{0}} \operatorname{Im}\left\{\frac{\nabla^{2}H^{+}}{H^{+}}\right\}, \qquad \epsilon = \frac{-1}{\omega^{2}\mu_{0}} \operatorname{Re}\left\{\frac{\nabla^{2}H^{+}}{H^{+}}\right\}$$

Simplified H-EPT

$$\sigma = rac{1}{\omega \mu_0}
abla^2 \hat{arphi}^+$$

Simplified H-EPT/ phase-based EPT

$$\sigma = rac{1}{\omega\mu_0}
abla^2 \hat{arphi}^+$$

Transceive phase

 $\phi_0 = \phi^+ + \phi^- \longleftarrow$ $\phi^+ \approx \tilde{\phi}_0/2 = \left(\phi^+ + \tilde{\phi}^-\right)/2$

Transceive phase assumption

FIGURE 4 Electrical properties tomography (EPT) phantom measurements at different saline concentrations. The plot clearly shows the different steps of added NaCl, corresponding to an accuracy of about 10 mS/m. Error bars indicate standard deviation over the averaged 50 × 50 voxels in the center of the phantom

Received: 23 January 2017

Revised: 13 March 2017 Accepted: 14 March 2017

DOI: 10.1002/nbm.3729

WILEY NMR

REVIEW ARTICLE

Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications

Ulrich Katscher¹ Ulrich Katscher¹

¹ Department of Tomographic Imaging, Philips Research Laboratories, Hamburg, Germany

²Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands

Correspondence

U. Katscher, Department of Tomographic Imaging, Philips Research Laboratories, Roentgenstrasse 24–26, 22335 Hamburg, Germany. Email: ulrich.katscher@philips.com Electric properties tomography (EPT) derives the patient's electric properties, i.e. conductivity and permittivity, using standard magnetic resonance (MR) systems and standard MR sequences. Thus, EPT does not apply externally mounted electrodes, currents or radiofrequency (RF) probes, as is the case in competing techniques. EPT is quantitative MR, i.e. it yields absolute values of conductivity and permittivity. This review summarizes the physical equations underlying EPT, the corresponding basic and advanced reconstruction techniques and practical numerical aspects to realize these reconstruction techniques. MR sequences which map the field information required for EPT are outlined, and experiments to validate EPT in phantom and *in vivo* studies are described. Furthermore, the review describes the clinical findings which have been obtained with EPT so far, and attempts to understand the physiologic background of these findings.

KEYWORDS

electric conductivity, EPT, numerical differentiation, permittivity, tumor characterization