Emerging Neuroimaging Techniques for Brain Tumor Characterization and Beyond

Presenter: Jingwen Yao M229 Advanced Topics in MRI May 30, 2023

Medical Imaging Modalities

Medical Imaging Modalities

Higher spatial resolution

Lower spatial resolution

Structural information

Functional information

Magnetic Resonance Imaging

Anatomic imaging

• Structural information

Diffusion Imaging

- Cellularity, neurite density, structural connectivity
- Surgery planning

Perfusion Imaging

 Blood volume, blood flow, vessel permeability

Functional MRI

- Activation map
- Functional connectivity

MR Spectroscopy

Chemical composition

Susceptibility Imaging

• Hemorrhage, microbleed, veins, iron deposition

Outline

QSM

Brain iron imaging of subcortical nuclei in HD

Huntington's disease

Ongoing projects

- 1. Tumor associated macrophage imaging using ferumoxytol MRI
- 2. Understanding the role of cerebellum in HD

Glioma

Glioma

27% CNS tumors81% malignant CNS tumors

Glioblastoma (GBM)

58% gliomas5-year relative survival rate 7.2%

Tumor Metabolism and Microenvironment

Development and validation of a pH- and oxygen-sensitive MRI technique

Development and validation of a pH- and oxygen-sensitive MRI technique

CEST-SAGE-EPI Sequence

Chemical Exchange Saturation Transfer

Chemical Exchange Saturation Transfer

Source of MR signal

Chemical Exchange Saturation Transfer

Source of MR signal

mriquestions.com

Chemical Exchange Saturation Transfer

Spin-And-Gradient Echo

Local magnetic field

- Blood-oxygenation level dependent (BOLD) effect
- Reversible transverse relaxation rate R₂'

Spin-And-Gradient Echo

$$A = Y^{-1}S$$

$$\mathbf{S} = \begin{pmatrix} ln(S_1) \\ ln(S_2) \\ ln(S_3) \\ ln(S_4) \end{pmatrix}, \ \mathbf{Y} = \begin{pmatrix} 1 & 0 & -TE_1 & 0 \\ 1 & 0 & -TE_2 & 0 \\ 1 & -1 & -TE_4 + TE_3 & TE_4 - 2 \cdot TE_3 \\ 1 & -1 & 0 & -TE_4 \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} ln(S_0) \\ ln(\delta) \\ R_2^* \\ R_2 \end{pmatrix}$$

$$R_{2}' = R_{2}^{*} - R_{2}$$
$$rOEF = \frac{R_{2}'}{\left(\frac{4}{3}\gamma \cdot \pi \cdot \Delta \chi \cdot B_{0}\right) \cdot rCBV}$$

Echo-Planar Imaging

CEST-SAGE-EPI sequence

CEST-SAGE-EPI sequence

Clinical validation of pH- and oxygen-sensitive MRI

Clinical validation of pH- and oxygen-sensitive MRI

Patient demographics

2016 WHO Grading

		All patients	Grade II	Grade III	Grade IV	
Retrospective Study						
· · · ·	No. of patients	159	42	38	79	
Inclusion criteria	(treatment naive / on treatment)	(96/63)	(33/9)	(28/10)	(35/44)	
• Adult patient	Age median [range]	nge] 52 [19 - 90]		48.5 [21 - 70]	59 [19 - 83]	
Pathologically confirmed glioma	Sex male / female	101/58	24/18	24/14	53/26	
IDH status available	<i>IDH status</i> wild-type / mutant	89/70	3/39	13/25	73/6	
Received CEST-EPI / CEST-SAGE-EPI scan	1p/19q status in IDH mutant non-codeleted / codeleted / NA	35/29/6	16/20/3	15/9/1	4/0/2	
	EGFR status in IDH wild-type wild-type / amplified / NA	42/40/7	2/1/0	9/3/1	31/36/6	

Yao J et al., Neuro-Oncology, 2019 Yao J et al., Cancers, 2022

ROC analysis (treatment naïve patients N = 96)

Clinical validation of pH- and oxygen-sensitive MRI

Does the biomarker predict glioma genotypes?

Prognostic biomarker

Does the biomarker predict patient survival?

Treatment efficacy biomarker

Does the biomarker predict patient outcome?

Clinical validation: predicting patient survival

	Characteristics	OS (Univariate)			OS (Multivariate)		
Overall survival		<i>p</i> -value	HR	HR [CI]	<i>p</i> -value	HR	HR [CI]
	Age	0.0002	1.035	1.017 - 1.054		Covaria	te
Cox Proportional-Hazards	Treatment status	< 0.0001	3.748	2.250 - 6.241		Covaria	te
Model Analysis	IDH status	< 0.0001	0.093	0.042 - 0.206	Covariate		
Univariate	MTR _{asym} at 3.0 ppm	0.2280	1.360	0.825 - 2.242	0.5474	1.1841	0.683 - 2.053
Aultivariate with age	R_2'	0.0002	1.440	1.188 - 1.746	0.0445	1.2703	1.006 - 1.604
Multivariate with age,	$MTR_{asym} \times R_2'$	0.0008	1.140	1.056 - 1.231	0.0019	1.1655	1.058 - 1.284
treatment status, and IDH	CET+NET volume	< 0.0001	1.007	1.003 - 1.010	0.1526	1.0027	0.999 - 1.006
status as covariates	Acidic volume	0.0003	1.020	1.009 - 1.031	0.0931	1.0103	0.998 - 1.023
	Acidic volume fraction	0.0410	1.021	1.001 - 1.041	0.3563	1.0098	0.989 - 1.031

Clinical validation: predicting patient survival

- Tumor acidity and hypoxia measured using pH- and oxygen-sensitive MRI are significant prognostic factors in glioma.
- Patients with more acidic and hypoxic tumors have significantly shorter survival.

Clinical validation of pH- and oxygen-sensitive MRI

- ► Baseline scan (Day 0)
- Post-Tx scan (Day 2)
- FDG-PET measurements correlate with CEST measurements

PFS (Univariate)			PFS (Multivariate)			
Characteristic	<i>p</i> -value	z-score	HR	<i>p</i> -value	z-score	HR
Volume						
Baseline	0.42	0.81	1.00 (0.98-1.02)	0.39	0.87	1.01 (0.99-1.02)
Normalized FD	G					
Baseline	0.53	0.64	2.43 (0.16-37.32)	0.57	0.57	2.16 (0.15-31.39)
Post-Tx	0.33	0.98	4.12 (0.24-70.64)	0.38	0.87	3.48 (0.21-57.08)
Change	0.33	0.99	1.05 (0.95-1.17)	0.29	1.07	1.06 (0.95-1.18)
MTR _{asym} at 3.0	ppm					
Baseline	0.77	-0.29	0.85 (0.28-2.56)	0.67	-0.42	0.78 (0.24-2.53)
Post-Tx	0.02	2.39	12.93 (1.58-105.69)	0.02	2.35	13.38 (1.54-115.92)
Change	0.06	1.85	1.02 (1.00 1.05)	0.04	2.01	1.03 (1.01-1.06)
Acidic CET+NET Volume						
Baseline	0.73	0.34	1.01 (0.98-1.04)	0.80	0.26	1.00 (0.97-1.04)
Post-Tx	0.02	2.32	1.07 (1.01-1.14)	0.02	2.37	1.08 (1.01-1.14)
Change	0.12	1.56	1.01 (1.00-1.01)	0.10	1.67	1.01 (1.00-1.01)

• Post treatment CEST contrast and change in CEST contrast are predictive of patient outcome

Decrease in Glycolytic Index (25%, 4 of 12) \rightarrow Significant Increase in PFS (*HR*=0.4, *P*=0.0467) and OS (*HR*=0.3, *P*=0.0192)

Outline

QSM

Brain iron imaging of subcortical nuclei in HD

Huntington's disease

Ongoing projects

- 1. Tumor associated macrophage imaging using ferumoxytol MRI
- 2. Understanding the role of cerebellum in HD

Iron imaging: Susceptibility MRI

Iron imaging: Susceptibility MRI

Susceptibility-weighted imaging

Quantitative susceptibility mapping

paramagnetic $\chi > 0$ Air Iron, gadolinium, copper, manganese Deoxyhemoglobin Water susceptibility Most of the biological tissues **Myelin** Calcification χ < 0 diamagnetic

Barnes J et al., Magn Reson Imaging Clin N Am, 2010

QSM: Iron imaging biomarker

paramagnetic $\chi > 0$ Air Iron, gadolinium, copper, manganese **Deoxyhemoglobin** Water susceptibility Most of the biological tissues **Myelin** Calcification χ < 0 diamagnetic

QSM: Iron imaging biomarker

paramagnetic $\chi > 0$ Air Iron, gadolinium, copper, manganese **Deoxyhemoglobin** Water susceptibility Most of the biological tissues **Myelin** Calcification χ < 0 diamagnetic

QSM: Iron imaging biomarker for neurodegenerative diseases

Huntington's disease

- Rare autosomal dominant disorder
- Huntingtin (HTT) gene mutation
 - CAG repeat length > 36

Huntington's disease

Stage 0: Hunting	ton's disease					
	Stage 1: Biomarke	ers of pathogenesis	;			
		Stage 2: Clinical				
		We need a quantitativ				
			Mild	Moderate	Severe	monitor di and assess
CAG repeats ≥40	Landmarks: • Putamen volume • Caudate volume	Landmarks: • Total Motor Score • Symbol Digit	Landmarks: • Total Functiona • Independence S	al Capacity Scale		before sym
		Modalities Test	edications f	for sympton	ns	1
	Disease course altering treatment					

We need a **robust and quantitative method** to **monitor disease progression** and assess treatment efficacy before symptom onset.

Tabrizi SJ et al. 2022

Characterizing HD with advanced MRI

Characterize the **iron dysregulation** and **microstructural alteration** in subcortical brain regions with HD progression, using 7T MRI. Quantitative susceptibility mapping (QSM)

Sensitive to iron deposition

Diffusion Tensor Imaging

Fractional anisotropy (FA) Mean diffusivity (MD)

Study population

	Healthy Controls	All HD	PM Far From Onset (YTO > 15yr)	PM Near Onset (YTO < 15yr)	Manifest HD
Number	33	35	6	8	21
Sex (male/female)	16/17	15/20	3/3	2/6	10/11
Age (year)	43.9±12.2	44.7±12.8	36.3±10.7	39.3±11.8	49.1±12.1
CAG Repeat	N/A	42.3±2.8	40.7±1.6	43.1±2.3	42.5±3.1
CAPS	N/A	0.8±0.3	0.6±0.1	0.8±0.1	0.9±0.3
Estimated Year To Onset	N/A	8.7±12.2	23.5±5.7	9.6±5.2	N/A
TMS (total motor score)	N/A	11.4±10.1	2.0±2.3	3.0±2.5	17.3±8.8
TFC (total functional capacity)	N/A	12.3±1.5	13.0±0.0	12.5±0.9	12.0±1.8
DCL (diagnosis confidence level)	N/A	1.8±1.3	0.7±0.8	0.6±0.7	2.6±1.0

Imaging methods – iron imaging

T₂*-weighted sequence

Imaging methods – microstructural imaging

Corrected

Raw

Pre-processing

Distortion correction, eddy current correction, etc.

- Degree of directionality of water diffusion
- Axon and myelin integrity

- Overall diffusivity
- Cell density, edema, tissue microstructure

Subcortical brain regions

Cross-sectional comparisons of subcortical nuclei susceptibility & volume

Iron deposition precedes volume changes.

Transient increases of volume and iron in the dentate nucleus of premanifest HD subjects suggest a new early biomarker.

Cross-sectional comparisons of subcortical nuclei FA & MD

Striatum FA is **elevated** in HD.

60 Emerging Neuroimaging Techniques for Brain Tumor Characterization and Beyond

Voxel-wise comparisons of susceptibility and FA

Elevated susceptibility and FA affect different subregions of striatum in HD.

61 Emerging Neuroimaging Techniques for Brain Tumor Characterization and Beyond

Longitudinal analysis and correlation between susceptibility and volume

Iron deposition in dentate nucleus may follow **non-monotonic changes** as HD progress.

Correlation between susceptibility and volume

Iron deposition **correlates positively** with volume in **dentate nucleus**, potentially indicative of a previously less understood mechanism of HD pathogenesis.

Correlation with clinical assessments

Ongoing projects

Characterization of cerebellum in premanifest HD using multimodal MRI

- Validate **QSM as an early imaging biomarker** of HD at clinical field strength (3T)
- Elucidate the role of cerebellum in HD disease progression: **compensatory or pathologic**?

Ongoing projects

Tumor associated macrophage (TAM) imaging using QSM

Ferumoxytol-enhanced MRI

- Evaluate response to immune modulating therapies in glioma patients
- Develop phenotype-specific imaging biomarkers of TAMs

Brain Tumor Imaging Lab

Dr. Benjamin Ellingson Catalina Raymond Dr. Chencai Wang Talia Oughourlian Nicholas Cho Dr. Robert Harris Dr. Ararat Chakhoyan Dr. Akifumi Hagiwara Dr. Hiroyuki Tatekawa Dr. Kunal Patel Dr. Francesco Sanvito

UCLA Scientists and Clinicians

Dr. Timothy Cloughesy Dr. David Nathanson Dr. Noriko Salamon Dr. Holden Wu Dr. Denise Aberle Dr. Whitney Pope Dr. Albert Lai Dr. Phioanh L. Nghiemphu Dr. Linda Liau Dr. Kim-Lien Nguyen Dr. Robert Prins Dr. Neil Harris

Lupo Lab

Larson Lab

Dr. Xiaoxi Liu

Avantika Sinha

Anna Bennett

Sule Sahin

Fei Tan

Nikhil Deveshwar

Dr. Elizabeth Smith

Dr. Jessica Scholey

Dr. Andrew Leynes

Dr. Jeremy Gordon

Dr. Manuska Vaidya

Dr. Nick Dwork

Dr. Abhejit Rajagopal

Dr. Melanie Morrison Angela Jakary Jacob Ellison Paul Rowley Ozan Genc Dr. Eason Chen Sivakami Avadiappan

UCSF/UCB Scientists and Clinicians

Dr. Yan Li Dr. Duan Xu Dr. Joseph Vu Dr. Eduardo Caverzasi Dr. Christopher Hess Dr. Javier Villanueva-Meyer Dr. Henry Roland

Outline

QSM

Brain iron imaging of subcortical nuclei in HD

Huntington's disease

Ongoing projects

- 1. Tumor associated macrophage imaging using ferumoxytol MRI
- 2. Understanding the role of cerebellum in HD