Motion-resolved Quantitative MRI

Anthony G. Christodoulou, PhD M229 Spring 2023 June 1, 2023

 \checkmark

question: is jodie foster really short or is jennifer lawrence really tall?

8:31 PM - 4 Mar 2018

Qualitative imaging

Pixel brightness has no absolute units. We can only make relative measurements.

Quantitative imaging

Pixel value has a physical unit. We can make absolute measurements.

Quantitative imaging

UCLA Samueli School of Engineering

Quantitative vs Qualitative imaging

Qualitative

Unitless pixel values

<u>Quantitative</u>

Pixel values have units

500

1000

More objective

 Measures absolute parameters associated with various (patho)physiological tissue properties and disease states

More reproducible¹

 Direct comparison across subjects, sites, and times

More sensitive^{2,3}

 T_1 (ms)

1500 2000

 Detect mild or diffuse alteration of tissue properties

 1 Metere R et al., PLoS One 2017 2 Singh P et al., Biomed Res Int 2013 3 h-Icí DO et al., Eur Heart J CVI 2014

What can MRI quantify?

Various tissue processes and tissue parameters, e.g.:

- Relaxation (T1, T2, T2*)
- Diffusion (ADC, helix angle, diffusion angle)
- Mechanical properties (stress, strain, stiffness)
- Flow (tissue perfusion or flow in larger vessels)
- Kinetics (K^{trans}/permeability)
- Tissue composition (water-fat, ECV, plasma volume)
- Multi-parametric imaging:
- Combines parameters for comprehensive assessment of tissue state and accurate diagnosis
 - e.g. chronic liver disease¹, prostate cancer², cardiovascular disease

	Diseases	Т1	Т2	T2*	ADC	SWI/ QSM	FF
	Stroke	+	+		+	+	
•	Traumatic brain injury	+	+		+	+	
enr	Epilepticus	+	+		+	+	
z	Multiple Sclerosis	+	+			+	
	Glioblastoma	+	+	+	+	+	FF
sular	Iron overload cardiomyopathy	+	+	+			
	Myocarditis	+	+				
	Sarcoidosis		+				
	Intramyocardial Hemorrhage		+	+		+	
Cardiovascular	Acute/chronic myocardial infarction	+	+		+		
	Dilated Cardiomyopathy	+	+				
	Hypertrophic Cardiomyopathy	+	+		+		
	Amyloidosis	+					
	Systemic lupus erythematosus	+			+		
	Diabetic cardiomyopathy /obesity/cardiac steatosis						+
	Cardiotoxicity	+					
	Liver iron overload	+	+	+		+	
	<u>Cancer</u> Breast		+		+		
승	Prostate	+	+		+	+	
ĝ	Liver	+	+	+	+	+	
	Liver fibrosis	+	+		+	+	
	Hepatic Carcinoma	+	+	+	+	+	
	Hepatic/pancreatic steatosis						+

¹Hussain SM et al., Radiographics 2009 ²Yu AC et al., Radiology 2017

What can MRI tell us about the heart?

- Structure and function (cine)
- T1 mapping and extracellular volume fraction (ECV) mapping
- T2 mapping
- T2* mapping
- Perfusion

Late gadolinium enhancement (LGE)

Quantitative cardiovascular MR (CMR)

Fabry disease Iron overload

Fatty metaplasia

Diffuse Myocarditis

Takotsubo

 $\begin{array}{c}
 1 \\
 1 \\
 HCT
\end{array}$ $\begin{array}{c}
 I \\
 Native T_1
\end{array}$ $\begin{array}{c}
 I \\
 Post-contrast
\end{array}$ $\begin{array}{c}
 I \\
 Factor rest
\end{array}$ $\begin{array}{c}
 I \\
 Factor rest
\end{array}$

Bulluck H et al., Circ J 2015; Thavendiranathan P et al., Circ Cardiovasc Imaging 2012

Cedars Sinai Biomedical Imaging Research Institute

Perfusion

UCLA Samueli School of Engineering

Quantitative MRI = dynamic MRI

The challenge in the heart

Several dynamic processes overlap, e.g.:

Cardiac motion

Respira

Solutions

Standard approach: "freeze" the motion

- Synchronize imaging with ECG
- Ask the patient to hold their breath
- Often: capture as few processes as possible

Incomplete list of options:

⁸Akçakaya M et al., *MRM* 2015

MOLLI ¹	shMOLLI ²	SASHA ³	SAPPHIRE ⁴
<i>T</i> ₂prep-SSFP⁵	QALAS ⁶	IR-T ₂ prep ⁷	SR-T ₂ prep ⁸
Fingerprinting ⁹			
oghli DL et al., <i>MRM</i> 2004	² Piechnik SK et al., <i>JCMR</i> 2010	³ Chow K, et al., <i>MRM</i> 2014	⁴ Weingärtner S et al., SCMR 2013

¹Messroghli DL et al., *MRM* 2004 ²Piechnik SK et al., *JCMR* 2010 ³Chow K, et al., *MRM* 2014 ⁵Giri S et al., *JCMR* 2009 ⁶Kvernby S et al., *JCMR* 2014 ⁷Blume U et al., *JMRI* 2010 ⁹Hamilton JI et al., *MRM* 2016

Cedars Sinai Biomedical Imaging Research Institute UCLA Samueli School of Engineeri

Standard motion approach

Typically limits imaging to <u>one</u> dynamic at a time

Example current workflow: Serial

Long exams made from a disjointed sequence of scans, e.g.:

ECG setup	Scouts	Cines	T1 mapping	T2 mapping	T2* mapping	Rest perfusion	Pause	Stress perfusion	Pause	ECV	LGE	
												41

Each scan requires special setup by the technologist

Each scan uses ECG triggering or gating

Each scan uses a different breath hold (often one breath-hold per slice)

• Scans from different breath holds are not co-registered

Extended scan times and complex workflow limit the availability of cardiac MRI

Ideal workflow: All-in-one, free-running

Brief 20–30 min exam in one push-button scan:

All maps and images are co-registered

All with 3D spatial coverage

- How can we get there?
 - Where are we now?

Simple workflow and short scan time could make cardiac MRI far more accessible

Solutions

Standard approach: "freeze" the motion

- Synchronize imaging with ECG
- Ask the patient to hold their breath
- Often: capture as few processes as possible

Alternative paradigm: embrace the motion

- Assign each dynamic its own time dimension
- No need for ECG
- Patient can breathe freely
- Resolve multiple overlapping processes, performing multiple tasks at once

Alternative paradigm: Multidimensional imaging

Scan continuously, capturing (rather than freezing) overlapping dynamics

Organize data/images into array with multiple time dimensions

Multidimensional imaging: Opportunity

Despite the "curse of dimensionality", there is also an opportunity!

The "blessing of dimensionality":

- High-dimensional spaces \rightarrow sparse representations
- Organized structure \rightarrow sparse representation along each individual dimension

Multidimensional image reconstruction approaches offer a way around the "curse"

- XD-GRASP: Compressed sensing Feng L et al., Magn Reson Med 2016
- XD flow: Compressed sensing
- Multitasking: Low-rank tensors
- HD-PROST: Low-rank tensors
- LRTA: Low-rank tensors

- Cheng JY et al., Sci Rep 2017
 - Christodoulou AG et al., Nature Biomed Eng 2018
 - Bustin A et al., Magn Reson Med 2019
 - Yaman B et al., IEEE Trans Comput Imaging 2020

XD-GRASP: Multidimensional Compressed Sensing

Treats cardiac motion/respiration as separate time dimensions,

then applies multidimensional compressed sensing.

Cedars Sinai Biomedical Imaging Research Institute Neighboring images in both directions are very similar

Feng L et al., MRM 2016

XD-GRASP: Multidimensional Compressed Sensing

Treats cardiac motion/respiration as separate time dimensions,

then applies multidimensional compressed sensing.

Cedars Sinai Biomedical Imaging Research Institute Neighboring images in both directions have sparse differences

Feng L et al., MRM 2016

Multidimensional imaging: Challenge

Multidimensional motion-resolved quantitative imaging: Challenge #1

Physiological motion dimensions AND physical process dimensions

Cardiac motion

Respiratory motion

T₁ relaxation

 T_2 relaxation

Curse of dimensionality is especially relevant

Scan time and memory increase exponentially with # of dimensions

dimensions

Multidimensional motion-resolved quantitative imaging: Challenge #2

Physiological motion dimensions are controlled by patient physiology

Need to be robust to unpredictable (**k**, τ_1 , τ_2 , τ_3 , τ_4)-space sampling

Magnetic resonance multitasking

Multidimensional imaging framework for quantitative imaging

Particularly focused on motion-resolved quantitative imaging

Challenge #1: Curse of dimensionality

- Solution: Low-rank tensor¹ (LRT) imaging to reduce scan time and memory
 - Directly addresses the curse of dimensionality
 - Scales well (~linearly), even ≥5 dimensions

Challenge #2: Unpredictable motion dimensions

• Solution: Hybrid implicit-explicit LRT reconstruction^{2,3} with flexible sampling requirements

⁴Liang Z-P, *IEEE-ISBI* 2007 ²Christodoulou AG et al., *ISMRM* 2016 ³Christodoulou AG et al., *Nature Biomed Eng* 2018

For one time dimension

Example: cardiac motion (cine imaging)

- 30 images (cardiac phases) in this sequence
- Images are so correlated as to be linearly dependent
 - Any image is a combination of L underlying basis images, L < 30
 - Any voxel time function is a combination of *L* temporal basis functions
- Image sequence is "low-rank" because rank L < 30

Liang Z-P, *IEEE-ISBI* 2007 Pedersen H et al., *MRM* 2009

UCLA Samueli School of Engineerir

For one time dimension

Example: cardiac motion (cine imaging)

Samueli

- Low-rank property established for many types of dynamics:
 - Dynamic contrast enhancement¹
 - Cardiac motion (cine)²
 - Free-breathing cine²
 - NMR relaxation³ (T1, T2)

²Pedersen H et al., *MRM* 2009

³Petzchner FH et al., *MRM* 2011

Cedars Sinai Biomedical Imaging Research Institute

Multitasking: Low-rank tensor imaging

Represent images as tensor/array

Low-rank tensor model

Represent images as tensor/array

R

Correlation induces low-rankness¹ (tensor can be factorized²):

School of Engineering

²Tucker LR, *Psychometrika* 1966

Low-rank tensor model: Implications

- 1. Factors are smaller than whole tensor
 - Short scan time, low memory
- 2. Exploits global correlation
 - Goes beyond image neighborhoods
- 3. Separates space from timeWill inform sampling/reconstruction
- 4. Each dimension has one factor matrix# of dimensions = # of factor matrices

Cedars Sinai Biomedical Imaging Research Institute

Multidimensional motion-resolved quantitative imaging: Challenge #1

Physiological motion dimensions AND physical process dimensions

Cardiac motion

Respiratory motion

T₁ relaxation

 T_2 relaxation

Curse of dimensionality is especially relevant

Scan time and memory increase exponentially with # of dimensions

dimensions

Multidimensional motion-resolved quantitative imaging: Challenge #2

Physiological motion dimensions are controlled by patient physiology

Need to be robust to unpredictable (**k**, τ_1 , τ_2 , τ_3 , τ_4)-space sampling

LRT imaging strategies

Implicit strategy^{1,2}

$$\arg\min_{\mathcal{A}} \|\mathbf{d} - E(\mathcal{A})\|_{2}^{2} + \lambda \sum_{i} \|\mathbf{A}_{(i)}\|_{*}$$

- Leaves tensor unfactored
- Tensor size still grows exponentially
 - E.g., 2 spatial + 4 time:
 - 210 GB per tensor
- Flexible sampling patterns

¹Trzasko JD et al., *ISMRM* 2013 ²Yu Y et al., *PLoS One* 2014

Explicit strategy^{3,4}

1. Extract \mathcal{G} & temporal **U**'s from SVDs of training data 2. $\arg \min_{\mathbf{U}_{\mathbf{x}}} \|\mathbf{d} - E(\mathcal{G} \times_1 \mathbf{U}_{\mathbf{x}} \times_2 \mathbf{U}_{\mathbf{c}} \times_3 \cdots \times_5 \mathbf{U}_{\mathbf{T}1})\|_2^2$

- Directly recovers tensor factors
- Storage of tensor factors grows ~linearly
 - E.g., 2 spatial + 4 time:
 - 67 MB per tensor

• Uses specific training data sampling pattern

¹Christodoulou AG and Liang Z-P, *ISMRM* 2015 ²He J et al., *IEEE-TMI* 2016

Multitasking strategy

Hybrid strategy

1. Implicit LRT recovery of missing training data 2. Extract Φ_t from HOSVD of completed training data 3. $\arg \min_{\mathbf{U}_x} \|\mathbf{d} - E(\Phi_t \times_1 \mathbf{U}_x)\|_2^2$

U_x

X

 Φ_{t}

- Implicit recovery step only done for training subset of k-space
 - still only MBs/coil
- Training data used, but no specific pattern required
- Retains computational benefits of explicit strategy

Cedars Sinai Biomedical Imaging Research Institute

Space is separated from time(s)

Space is separated from time(s)

Collect two interleaved sets of data:

Imaging data

Targets spatial factor $\mathbf{U}_{\mathbf{x}}$ High spatial resolution Extensive **k**-space coverage

Training data

Targets temporal factor Φ_t High speed One (or a few) **k**-space trajectories repeated

Space is separated from time(s)

Collect two interleaved sets of data:

Imaging data

Targets spatial factor $\mathbf{U}_{\mathbf{x}}$ High spatial resolution Extensive **k**-space coverage

Training data

Targets temporal factor Φ_t High speed One (or a few) k-space trajectories repeated

Image reconstruction

- For training data $\mathcal{D}_{tr},$ one (or a few) k-space trajectories are sampled very frequently
- This will cover many—but not necessarily all—time point combinations
- "Missing" training data is recovered by <u>unfactored</u> lowrank tensor completion
 - Only one k-space trajectory → still only MBs/coil

Image reconstruction

Continually acquire IR-FLASH

688 inversion times ($\Delta \tau$ =3.56 ms) up to 2.5 sec

• With LRT model, has similar scan time as far fewer inversion times (e.g., 8)

• Avoids binning radial spokes

Real-time evolution

Shaw JL et al., *ISMRM* 2016 Shaw JL et al., *MRM* 2019

3 time dimensions gives us a "cube" with an image at each point

Can retrospectively isolate any of 3 time dimensions

T_1 recovery

Cardiac motion

Respiratory motion

Provides multiple contrasts at every cardiac and respiratory phase

T_1 multitasking: Acceleration demonstration

SENSE (8 τ bins, $\Delta \tau$ =306 ms)

Low-rank tensor (344 τ bins, $\Delta \tau$ =7 ms)

12 min scan

1 min scan

T_1 multitasking: Acceleration demonstration

Low-rank tensor

12 min scan

1 min scan

Cedars Sinai Biomedical Imaging Research Institute UCLA Samueli School of Engineerin Shaw JL et al., *ISMRM* 2016 Shaw JL et al., *MRM* 2019

Quantitative cardiovascular MR (CMR)

 T_1 w/Gd

Fabry disease Iron overload

Eatty motoplasic

Fatty metaplasia

Diffuse Myocarditis

Takotsubo

Bulluck H et al., Circ J 2015; Thavendiranathan P et al., Circ Cardiovasc Imaging 2012

Perfusion

UCLA Samueli School of Engine

ECV Multitasking in small animals

HFpEF animal model: Dahl salt-sensitive (DSS) rats

Han P et al., JCMR 2021

Adding more time dimensions

Adding more time dimensions

Adiabatic T2prep¹/inversion recovery² (T2IR) – prepared FLASH

¹Nezafat R et al., *MRM* 2006 ²Brown R et al., *MRM* 2010

First 90° rotation tips magnetization into transverse plane

Refocusing pulses ensure T2 decay instead of T2*

Second 90° rotation interrupts T2 decay and stores T2-weighted magnetization along -z

T2-weighted "inversion" (starting point of T1 recovery depends on T2)

Christodoulou AG et al., SCMR 2017

Adiabatic T2prep¹/inversion recovery² (T2IR)-prepared FLASH

¹Nezafat R et al., *MRM* 2006 ²Brown R et al., *MRM* 2010

Christodoulou AG et al., SCMR 2017

Cardiac motion

Respiration

 T_1 recovery

T2prep duration

Christodoulou AG et al., Nature BME 2018

T_1 - T_2 multitasking: Can native T_1 - T_2 predict LGE in acute MI?

Cedars Sinai Biomedical Imaging Research Institute

Q

UCLA Samueli School of Engineeri

Christodoulou AG et al., Nature BME 2018

Simultaneous Multi Slice (SMS) Multitasking

Radial SMS implementation of T1-T2 multitasking

- 3 slices with SMS Multitasking
- No ECG
- No breath-holds
- 3 min acquisition
- 3 slices with conventional mapping techniques
- ECG triggered
- 6 breath holds
- 4–7 min acquisition (with breath-hold recovery)

Mao X et al., Front Cardiovasc Med 2022

T1-T2 Simultaneous Multislice (SMS)

Multiecho multitasking for T1-T2-T2*-fat fraction (FF)

Cedars Sinai Biomedical Imaging Research Institute

Cao T et al., MRM 2022

MR Multitasking 2D T1-T2-T2*-fat fraction mapping

Healthy volunteer example

Myocardial perfusion multitasking

Continuous-acquisition saturation recovery (SR)-prepared FLASH

3 time dimensions representing:

Real-time evolution

1) Cardiac motion 2) Saturation recovery 3) Gd dynamics

Christodoulou AG et al., SCMR 2017

Myocardial perfusion multitasking

Retrospective time dimension/"task" selection

Task: Cine

 τ = 160 ms 18th cardiac cycle

Task: Perfusion

 τ = 280 ms End-diastole

Christodoulou AG et al., SCMR 2017

Myocardial perfusion multitasking

Single-bolus perfusion quantification from time-resolved T_1 maps

Myocardial perfusion multitasking: Simultaneous PET-MR

New developments: 3D perfusion

- 3D spatial coverage \bullet
 - 2 x 2 x 8 mm
 - 12 slices ullet
- Free-breathing, non-ECG igodot
- 20 cardiac phases •
- Single-bolus quantification

Systole

Christodoulou AG et al., SMRA 2019

Myocardial perfusion multitasking: 3D free-breathing

Systole

Christodoulou AG et al., ISMRM 2019

Myocardial perfusion multitasking: 3D free-breathing

Diastole

Christodoulou AG et al., ISMRM 2019

MR Multitasking for free-breathing quantitative DCE

6-D imaging: 3 spatial dimensions × respiration × T_1 recovery × DCE

Cedars Sinai Biomedical Imaging Research Institute

Wang N et al. Magn Reson Med 2020

MR Multitasking for free-breathing quantitative DCE

6-D imaging: 3 spatial dimensions × respiration × T_1 recovery × DCE

Wang N et al. Magn Reson Med 2020

MR Multitasking: Outlook

Potential implications

- No need for ECG or breath holds
- Shorter and simpler exams
- Retrospective imaging decisions
- Reduced financial and training demands
- Replacement of serial clinical protocols with a single, quantitative "push-button" s can

Future directions

<u>Translate</u>

- Validate extensively
- Integrate into PACS
- Develop high-dimensional display tools

<u>Improve</u>

- Explore new, more powerful image models
- Incorporate additional biomarkers and dimensions
- Investigate time-resolved parameter maps

<u>Analyze</u>

- Develop multiparameter analysis for diagnosis, risk
 prediction_therapy manitoring_and more
 - prediction, therapy monitoring, and more
Acknowledgements

Collaborators and contributors

- Debiao Li, PhD
- Yibin Xie, PhD
- Zhaoyang Fan, PhD
- Hsu-Lei Lee, PhD
- Kim-Lien Nguyen, MD
- Paul Finn, MD
- Dan Berman, MD
- Eugenio Cingolani, MD
- Eduardo Marbán, MD PhD
- Xiaoming Bi, PhD
- Fei Han, PhD

- Tianle Cao, MS
- Yuhua Bill Chen, PhD
- Zihao Chen, MS
- Xinguo Fan, BS
- Pei Han, PhD
- Zhehao Hu, PhD
- Zheyuan Hu, BS
- Lingceng Ma, PhD
- Sen Ma, PhD
- Vincent Xianglun Mao, PhD
- Fardad Michael Serry, MS
- Jaime Shaw, PhD
- Nan Wang, PhD
 UCLA Samueli
 School of Engine

Grant support

- NIH R01 EB028146
- NIH R01 HL156818
- NIH R01 EB032801
- SCMR Clinical Seed Grant

MR Multitasking throughout the body

