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Multitrait Scaling Analysis

* Internal consistency reliability
- Item convergence

- Ttem discrimination



Measurement Error

observed = true . systematic . random
score error error

(bias)



o1 Cronbach’s Alpha

02 45
03 42
04 35
05 22

= = \O

Source df SS
Respondents (BMS) 4 11.6
ITtems (JMS) 1 0.1
Resp. x Items (EMS) 4 4.4

Total 9 16.1

Alpha= 29-11 = 18 =[062

2.9 2.9



Intraclass Correlation and Reliability
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Alpha for Different Numbers of Items
and Homogeneity

Average Inter-item Correlation ( r)

Number

of Ttems (k) O .2 .4 6 .8 10
p .000 KKK b72 750 .889 1.000
4 .000 b00 727 .857 .941 1.000
6 .000 600 .800 .900 .960 1.000
8 .000 .666 842 924 970 1.000

Alpha,= _k*Tr
1+ (k-1)*r




Spearman-Brown Prophecy Formula

N - alpha
X
alpha y -
1+ (N-1)* dlpha,

N = how much longer scale y is than scale x




Example Spearman-Brown Calculations

MHI-18

18/32 (0.98)
(1+(18/32 -1)*0.98

= 0.55125/0.57125 = 0.96



Number of Items and Reliability for

Three Versions of the
Mental Health Inventory (MHI)



Reliability Minimum Standards

0.70 or above (for group comparisons)
0.90 or higher (for individual assessment)

> SEM = SD (1- reliability)'/?



Hypothetical Multitrait/Multi-Item
Correlation Matrix



Multitrait/Multi-Item Correlation
Matrix for Patient Satisfaction Ratings

Technical Interpersonal Communication Financial
Technical
1 0.66* 0.631 0.671 0.28
2 0.55* 0.541 0.501 0.25
3 0.48* 0.41 0.44% 0.26
4 0.59* 0.53 0.561 0.26
5 0.55* 0.6071 0.561 0.16
6 0.59* 0.58% 0.57t 0.23
Interpersonal
1 0.58 0.68* 0.6371 0.24
2 0.597 0.58* 0.6171 0.18
3 0.621 0.65* 0.671 0.19
4 0.53%1 0.57* 0.6071 0.32
5 0.54 0.62* 0.58t 0.18
6 0.48% 0.48* 0.461 0.24

Note - Standard error of correlation is 0.03. Technical = satisfaction with technical quality.
Interpersonal = satisfaction with the interpersonal aspects. Communication = satisfaction with
communication. Financial = satisfaction with financial arrangements. *Item-scale correlations for
hypothesized scales (corrected for item overlap). tCorrelation within two standard errors of the
correlation of the item with its hypothesized scale.



Confirmatory Factor Analysis

» Compares observed covariances with
covc?r'llances generated by hypothesized
mode

» Statistical and practical tests of fit
* Factor loadings

» Correlations between factors

* Regression coefficients



Fit Indices
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Three Steps in Exploratory Factor Analysis

Check correlation matrix for problems
Identify number of dimensions or factors

Rotate to simple structure



Latent Trait and ltem Responses

Latent Trait

P(X;=1)

Item 1 P(X;=0)
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Item Responses and Trait Levels

Person 1 Person 2 Person 3

/ ' /

i i i Trait

Item 1 Item 2 Item 3 Continuum



Item Response Theory (IRT)

IRT models the relationship between a person’s
response Y; to the question (i) and his or her level
of the latent construct 6 being measured by
positing

Pr(Y, =k) = :

1 +exp(-a0+b,)

b, estimates how difficult it is for the item (i) to have a score of k
or more and the discrimination parameter a; estimates the
discriminatory power of the item.

If for one group versus another at the same level 6 we observe
systematically different probabilities of scoring k or above
then we will say that the item i displays DIF



Item Characteristic Curves
(2-Parameter Model)
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PROMIS Assessment Center

http://www.nihpromis.org/

http://www.assessmentcenter.net/ac1/
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Appendix: Exploratory Factor Analysis

Check correlation matrix for problems
Identify number of dimensions or factors

Rotate to simple structure




Checking Correlation Matrix

Determinant of correlation matrix ranges
between O-1

Determinant = O if there is linear dependency
in the matrix (singular, not positive definite,
matrix has no inverse)

Determinant = 1 if all off diagonal elements
in matrix are zero (identity matrix)



Partitioning of Variance Among Items

observed = Common + Specific * Error



Principal Components Analysis

Try to explain ALL variance in items, summarizing interrelations
among items by smaller set of or"rhogonal principal components
that are linear combinations of the items.

* First component is linear combination that explains
maximum amount of variance in correlation matrix.

* Second component explains maximum amount of variance
in residual correlation matrix.

Factor loadings represent correlation of each item with the
component.

Eigenvalue (max = number of items) is sum of squared factor
loadmgs for the component (column) and represents amount of

variance in items explained by it.



Principal Components Analysis

- Standardize items: Z, = (X —x-bar)/ SD,

* Use 1.0 as initial estimate of communality (variance in item explained
by the factors) for each item

» Component is linear combination of items

* First component accounts for as much of the total item variance as
possible

- Second component accounts for as much variance as possible, but
uncorrelated with the first component

—_— * *
* C; =a™y +by™x,

— * *
* C, =ay,"x; +by"%,

* Meanof C,&C, = 0



Common Factor Analysis

Factors are not linear combinations of items but
are hypothetical constructs estimated from the

ItTems.

These factors are estimated from the common
variance (not total) of the items and thus the
diagonal elements (communality estimates) of
the correlation is set to less than 1.0.



Common Factor Analysis

» Each item represented as a linear combination of
unobserved common and unique factors

X1=a1F1+ b1F2+e1

X

+ +
,=a,F +b,F,te

2
F, and F, are standardized common factors

 a'sand b's are factor loadings; e's are unique factors

* Factors are independent variables (components are
dependent variables)



Hypothetical Factor Loadings,
Communalities, and Specificities

Factor Loadings Communality Specificity

Variable F 1 Fo h 2 u ?
) & 0.511 0.782 0.873 0.127
X9 0.553 0.754 0.875 0.125
X3 0.631 -0.433 0.586 0.414
Xy 0.861 -0.386 0.898 0.102
X5 0.929 -0.225 0.913 0.087
Variance explained 2.578 1.567 4.145 0.855

0 0 0 0

From Afifi and Clark, Computer-Aided Multivariate Analysis, 1984, p. 338




Number of factors decision

Guttman’ s weakest lower bound
PCA eigenvalues > 1.0

Parallel analysis

Scree test

ML and Tucker’ s rho



Parallel Analysis

PARALLEL.EXE: LATENT ROOTS OF RANDOM DATA CORRELATION MATRICES PROGRAM
PROGRAMMER: RON HAYS, RAND CORPORATION
FOR 3000 SUBJECTS AND 15 VARIABLES

KK R AR AR A A A A A A AR A A A AR A AR A AR A A KRR AR A AR A A A AR A A A A AR A AR A AR A AR A AR A A A A Ak k kK

Hays, R. D. (1987). PARALLEL: A program for performing parallel

analysis. Applied Psychological Measurement, 11, 58.
R R dh I b b b db db b 2 Sh b b Sb Sh b b Sh b b Sb Sh b b dh Sb b 2 db b dh Sb b db dh b b Sh Sb b S dh b b db Sb b S dh b b Sh Ib b S dh b b Sb Ib b 24

EIGENVALUES FOR FACTOR ANALYSIS SMC ESTIMATES FOLLOW:
OBSERVED
LAMBDA 7.790000 .111727
LAMBDA .910000 .084649
LAMBDA .420000 .068458
LAMBDA .260000 .057218
LAMBDA .130000 .043949
LAMBDA .100000 .033773

LAMBDA .005000 .021966

(CAN'T COMPUTE LAMBDA 8 :LOG OF ZERO OR NEGATIVE IS UNDEFINED)

Results of Parallel Analysis Indicate Maximum of 6 Factors.
Slopes followed by asterisks indicate discontinuity points
that may be suggestive of the number of factors to retain.




Scree Test

Scree Plot

Eigenvalue

Component Number




ML and Tucker s rho

Significance Tests Based on 3000 Observations

Pr >
Test DF Chi-Square ChiSq
HO: No common factors 105 30632.0250 <.0001
HA: At least one common factor
HO: 4 Factors are sufficient 51 937.9183 <.0001

HA: More factors are needed

Chi-Square without Bartlett's Correction 940.58422
Tucker and Lewis's Reliability Coefficient 0.94018



Factor Rotation

Unrotated factors are complex and hard to
interpret

Rotation improves “simple” structure (more high
and low loadings) and interpretability



Rotation

Communalities unchanged by rotation

Cumulative % of variance explained by common factors
unchanged

Varimax (orthogonal rotation) maximizes sum of
squared factor loadings (after dividing each loading by
the item’ s communality)

Promax allows factors to be correlated

Structure, pattern, and factor correlation matrix



Search [3]Favorites

J Address I@ http: /fwww, utexas. edujccidocs)stats3. html LI @ Go
analyst wants to confirm the hypothesis or replicate the previous study, then a factor analysis with the prespeciied number of factors can be run. The NFATUTOUR=z 1]
{or N=x) option in PROC FACTOR extracts the user-supplied number of factors. Ultimately, the criterion for determining the number of factors should be the
replicability of the solution. It 1s important to extract only factors that can be expected to replicate themselves when a new sample of subjects 1s employed.

S. The Rotation of Factors

Once you decide on the number of factors to extract, the next logical step 1s to determine the method of rotation. The fundamental theorem of factor analysis 1s
mvariant within rotations. That 1s, the mitial factor pattern matrix 1s not unique. We can get an infinite number of solutions, which produce the same correlation matrix,
by rotating the reference axes of the factor solution to simplifiy the factor structure and to achieve a more meaningful and interpretable solution. The i1dea of simple
structure has provided the most common basis for rotation, the goal being to rotate the factors simultaneously so as to have as many zero loadings on each factor as
possible. The following figure 1s a simplified example of rotation, showing only one vaniable from a set of several vanables.

|

The vaniable V1 iitially has factor loadings {correlations) of .7 and .6 on factor 1 and factor 2 respectively. However, after rotation the factor loadings have
changed to .9 and .2 on the rotated factor 1 and factor 2 respectively, which is closer to a simple structure and easier to interpret.

The simplest case of rotation is an erthogonal retation in which the angle between the reference axes of factors are maintained at 20 degrees. More complicated

forms of rotation allow the angle between the reference axes to be other than a right angle, 1.e., factors are allowed to be correlated with each other. These types of
rotational procedures are referred to as obligue rotations. Orthogonal rotation procedures are more commonly used than oblique rotation procedures. In some
situations, theory may mandate that underlying latent constructs be uncorrelated with each other, and therefore oblique rotation procedures will not be appropriate.

In other situations where the correlations between the underlying constructs are not assumed to be zero, oblique rotation procedures may vield simpler and more
mterpretable factor patterns. ~|




Items/Factors and Cases/Items

At least 5
- items per factor
- cases per item
- cases per parameter estimate




