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Course Overview

e Course website
- https://mrrl.ucla.edu/pages/m219

e 2024 course schedule
- https://mrrl.ucla.edu/pages/m219 2024

® Assignments

- Homework #1 due on 1/29
- Homework #2 will be out on 1/29

e Office hours, Fridays 10-12pm

- In-person (Ueberroth, 1417B)
- /Zoom is also available



https://mrrl.ucla.edu/pages/m219
https://mrrl.ucla.edu/pages/m219_2024
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Free Precession w/o Relaxation
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Precession is left-handed (clockwise).
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Basic RF Pulse
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B () = BS(t)[cos(wppt + 0)i — sin(wpyt + 0);])

B—f (t) pulse envelope function
WRE excitation carrier frequency
6’ initial phase angle

B1 is perpendicular to Bo.
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Rotating Frame



Lab vs. Rotating Frame

 The rotating frame simplifies the mathematics
and permits more intuitive understanding.

90° RF (Laboratory Frame) 90° RF (Rotating Frame)
- VAV
X Y X’ Y’
Spins Precess Observer Precesses

Note: Both coordinate frames share the same z-axis.




Combined Bo & B1 Effects
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Relationship Between Lab and Rotating Frames
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Bloch Equation (Rotating Frame)
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— Equation of motion for an
ensemble of spins (isochromats).
[Laboratory Frame]

- — Equation of motion for an
Wrot I B t ensemble of spins (isochromats).
'7 ro [Rotating Frame]
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Effective B-field that
M experiences in the
rotating frame.
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Applied B-field in the rotating frame.

Fictitious field that demodulates
the apparent effect of Bo.
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Bloch Equation (Rotating Frame)

B(1) = Bok + BE(1)[cos(wppt + 0)i — sin(wgt + 0)]]

[ B¢(1)cos(wppt + 0) B¢(f)cos 0
B, = |-Bt@sin(wprt + )| B, () = | -Bi(t)sin0
\ B, B,

Effective B-field that I Applied B-field in the rotating frame.

M experiences in the
rotating frame. Fictitious field that demodulates

the apparent effect of Bo.




Bloch Equation (Rotating Frame)
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Assume no RF phase (6 = 0)
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To the Board



T1 & T2 Relaxation



Relaxation

* Magnetization returns exponentially to
equilibrium:
— Longitudinal recovery time constant is T1
— Transverse decay time constant is T2
* Relaxation and precession are independent

M, | M

time time




T1 Relaxation

Longitudinal or spin-lattice relaxation

— Typically, (10s ms) < T1 < (100s ms)
T1 is long for

— Small molecules (water)

— Large molecules (proteins)
T1 is short for

— Fats and intermediate-sized molecules
T1 increases with increasing BO
T1 decreases with contrast agents

Short T+4s are bright on T1-weighted image



T1 Relaxation

Free Precession in the Lab or Rotating Frame with Relaxation
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T1 Relaxation
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T1 Contrast

Short Repetition Long Repetition

Signal

Time \ CSF Time



T2 Relaxation

Transverse or spin-spin relaxation
— Molecular interaction causes spin dephasing
— Typically, T2 < (10s ms)

Increasing molecular size, decrease T2
— Fat has a short T2

Increasing molecular mobility, increases T2
— Liquids (CSF, edema) have long T2s

* Increasing molecular interactions, decreases T2
— Solids have short T2s

T2 relatively independent of BO

Long T2 is bright on T2 weighted image



T2 Relaxation

1.00) Free Precession in the Rotating Frame with Relaxation
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T2 Contrast

Long Echo-Time

Short Echo-Time

Signal




T1and T2 Values @ 1.5T

Tissue T: [ms] T, [ms]
gray matter 925 100
white matter 790 92
muscle 875 47
fat 260 85
kidney 650 58
liver 500 43
CSF 2400 180

Each tissue has “unique” relaxation properties, which enables “soft
tissue contrast”.



T>" Relaxation



T->" Relaxation

1 1
e A B
T~ T, !
 To%is “observed” transverse relaxation time

constant
« T2* consists of irreversible spin-spin (T2)
dephasing and reversible intravoxel spin de-
phasing due to off-resonance
« Sources of off-resonance:
— Bo inhomogeneity
— susceptibility differences (e.g. air spaces)




T- versus T»o*

T2 Decay
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T2* is signal loss from spin dephasing and T»
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Transverse Magnetization [a.u.]
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T12*<T2 (always!)

e White Matter T2
- = White Matter T,
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Bloch Equations with Relaxation

IM - - Mi+ M, (M, — M)k
i— B — g9 _
dt a T T,

* Differential Equation
— Ordinary, Coupled, Non-linear

* No analytic solution, in general.
— Analytic solutions for simple cases.
— Numerical solutions for all cases.

* Phenomenological

— Exponential behavior is an
approximation.
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Bloch Equations - Lab Frame

—

dM - o Mji+M,j (M,— M)k

— =M x~yB —
di ! T, T,
Precession Transverse Longitudinal
Relaxation Relaxation

* Precession
— Magnitude of M unchanged
— Phase (rotation) of M changes due to B

* Relaxation
— T4 changes are slow O(100ms)

— T2 changes are fast O(10ms)
— Magnitude of M can be ZERO

o Diffusion

— Spins are thermodynamically driven to
exchange positions.

— Bloch-Torrey Equations

. David Geffen
¥ School of Medicine

UCLA

Radiology



Bloch Equations — Rotating Frame
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Free Precession
In the Rotating Frame
with Relaxation



Free Precession in the Rotating Frame
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The precessional term drops out in the rotating frame. gg{;g




Free Precession in the Rotating Frame
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Transverse Longitudinal
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e No precession

* T4 and T2 Relaxation

 Drop the diffusion term

 System or first order, linear, separable ODEs!

gﬁlﬂﬁfﬁiﬂ The precessional term drops out in the rotating frame. gg{;g



Free Precession in the Rotating Frame
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Solution:
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Forced Precession
In the Rotating Frame
with Relaxation



Forced Precession in the Rot. Frame with Relaxation
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Forced Precession in the Rot. Frame with Relaxation
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 B1 induced nutation

* T4 and T2 Relaxation

 Drop the diffusion term

 System or first order, linear, coupled PDES!
e When does this equation apply?

B Cretten The precessional term does not drop out in the rotating frame. gﬁ,{;g‘y\




Forced Precession in the Rotating
Frame with Relaxation

* RF pulses are short
—100pus to Sms

» Relaxation time constants are long
—T1 0O(100s) ms
— T2 O(10s) ms

« Complicated Coupling

» Best suited for simulation
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Free? Forced? Relaxation?

e We’ve considered all combinations of:
— Free and forced precession
— With and without relaxation
— Laboratory and rotating frames

e Which one’s concern M219 the most?

— Free precession in the rotating frame with
relaxation

— Forced precession in the rotating frame
without relaxation.

e We can, in fact, simulate all of them...
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Questions?

e Related reading materials

= Nishimura - Chap 4 and 5

Kyung Sung, Ph.D.
KSung@mednet.ucla.edu
http://mrrl.ucla.edu/sunglab
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