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Reconstruction Considerations

- Zero padding (interpolation)
- Windowed recon to reduce Gibb’s ringing
- Multi-channel (coil) reconstruction



MRI Signal Equation
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Image Reconstruction
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The Fourier Transform
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Image Reconstruction
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How do we determine I (7)?



Image Reconstruction
S(En) — / ](7:*) e—iQWEn-FdF MRI Signal
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Image Reconstruction
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One-dimensional Case



Image Recgnstruction
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This Is what we measure! This is what we want!




Image Recgnstruction
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This Is what we measure! This is what we want!

We can show the following...(Page 191 in Lauterbur).
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Fourier Series Periodic Extension of [(x)



Image Reconstruction
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* Fourier series * Periodic extension of /(x)
* Ak is the fundamental frequency * nis an integer

* S[n] coefficient of the nth harmonic * Period is 1/Ak=FOV

“—FOV—«2:FOV>«3-FOV~>
Periodic extensions of a object/function.



Sampling Considerations



Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}



Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}

Can I(x) be recovered from its periodic extension?
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Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}

Can I(x) be recovered from its periodic extension?
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then

If I(x )—Oon\x|>FOVx/2(ze A/~C<FOV>,



Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}

Can I(x) be recovered from its periodic extension?
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then

If I(x )—Oon\x\>FOVx/2(ze A/~C<FOV>,
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But ¢ takes forever...



Finite Sampling

S(k) is measured atk € D
D = {nAk,—N/2 <n < +N/2}

T T

Fourier Number of
Step-size Sample Points
N/2—1
I(x)=Ak Y S[n]e®™% 2| < ¢ anea
n=—N/2

This is the fundamental image reconstruction equation for MRI.



Sampling Considerations
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Review Sampling Theorem

Review Lectures 9/10 Spatial Localization



Noise Considerations



Noise Considerations

Noise Free




Signal [a.u.]

Noise Considerations

e Signal-to-Noise Ratio (SNR)

Time [frame #]




Noise Considerations

e Signal-to-Noise Ratio (SNR)

- A fundamental measure of image quality

A Signal amplitude

SNR

o of noise

- SNR ;5 =20 - log(SNR)

Nishimura Ch. 7.5



Noise Considerations

® Noise Sources

- Thermal (Brownian motion of electrons)
- Coll resistance, sample (body) resistance

- Power spectral density:
N(f) = 4kTR and N(Af) = 4kTR - Af
- Modeled as additive white Gaussian (AWG) noise

- Noise from the body typically dominates,
SNR x B,

Nishimura Ch. 7.5



Noise Considerations

® |mage Noise Statistics
- Physical real-valued signal

£ (1) = 5,(8) + 1 (1)

- §ampled (Nyquist) demodulated complex signal
5(J) = 5()) + n(j)

- 7 is bivariate (complex) zero-mean Gaussian,
with real/imag components each with a,f

Nishimura Ch. 7.5



Noise Considerations

® |mage Noise Statistics

- 2D Cartesian k-space sampling is uniform and

2D FT is unitary, thus noise in the image domain
will also be AWG

- The magnitude operation |I(a, b) | alters noise
statistics

- Background (/ is zero-mean): Rayleigh distr.

- Signal regions: Rician distr.

Nishimura Ch. 7.5



Noise Considerations

e Effect of Acquisition Time
- Simple 1D example (impulse in image space)
- N samples in k-space, each with amplitude A
- Noise variances add (independence)

> NA  4/NA

SNR = =

B \/ \/No; On

Nishimura Ch. 7.5




Noise Considerations

e Effect of Signhal Averaging

- Average separate measurements of the same k-

space data samples (e.g., 2 measurements)
- Signal amplitudes add

- Noise variances also add (independence)

Y
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- SNR,,,, =/2 - SNR

Nishimura Ch. 7.5



Noise Considerations

e Effect of Readout Time

- Double readout duration 7.,

- Typically, also double sampling interval At to
maintain k-space sampling extent

- Af « 1/(A1) : halves the signal bandwidth Af
- Recall that 6>  Af
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Nishimura Ch. 7.5



Noise Considerations

e Summary of Acquisition Time Effects
- SNR \/N - T

ave read

- SNR \/ measurement time

o Effect of Spatial Resolution
- SNR  (6,)(5,)(6,)

e Other factors

Nishimura Ch. 7.5



Zero Padding



Zero-Padding

e Append zeros to k-space data before FFT
- Append symmetrically about k-space

e \Why?

If N=2n, then the radix-2 FFT can be used
Increases the “digital” resolution; interpolates
pixels in image space

Reconstruction with correct aspect ratio
Starting point for iterative reconstructions; or a
reference for comparisons



Asymmetric Resolution

Low-Res Data

64x64




Asymmetric Resolution

Low-Res Data




Asymmetric Resolution

Low-Res Data Asymmetric Res

64x64 32x64

Pixels are square, but they shouldn’t be.




Asymmetric Resolution

Low-Res Data Asymmetric Res

64x64 32x64

Stretched




Asymmetric Resolution

Low-Res Data Asymmetric Res Zero-Padded

64x64 32x64 64x"64”"

Stretched




Windowed Reconstruction to
Reduce Gibb’'s Ringing



Gibb’s Ringing
® Spurious ringing around sharp edges

e Max/Min overshoot is ~9% of the intensity discontinuity

- Independent of the # of recon points
- Frequency of ringing increases as # of recon points
Increases

® Ringing becomes less apparent

e Result of truncating the Fourier series model as a
consequence of finite sampling

e (Can reduce by:

- Acquiring more data
- Filtering the data to reduce oscillations in the PSF



Shepp-Logan Phantom




Gibb’s Ringing
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Gibb’s Ringing
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Pad

KY. 64 128 256
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Windowed Reconstruction

N/2—1
[(x)=Ak »  5(nAk)e?™make
n=—N/2

Fourier reconstruction



Windowed Reconstruction

N/2—1
[(x)=Ak »  5(nAk)e?™make
n=—N/2

Fourier reconstruction

N/2-1
f(:p) — Ak Z S (nAk) w,, e ™R 6o
n=—N/2 T

Windowed Fourier

reconstruction K-space
filter/window

function



Windowed Reconstruction
I(z)=1I(z)%*h(x)

1L

Image  Object Spread
Function



Windowed Reconstruction
I(z)=1I(z)%*h(x)

|

Set This To
o)-function

Point Spread Function for a windowed Fourier reconstruction.
N/2—1

h(I) — AL Z wneiQWnAkaz

n=—N/2



Hamming Filter - 1D

w(n) é{ 8.544—0.46608(27?%) _N/Qofhzs,ii/z‘l
0.
0.
0.
0.

-N/2 0) N/2-1



Windowed Reconstruction

FWHM PSF for a Hamming windowed Fourier reconstruction.

—1
N/2—1

Wh = Z (wm/wo) AV 5

m=—N/2

In general w,,<wy, therefore

1
>
WhZ GAT

Hamming windowed Fourier reconstruction suppresses ringing,
but reduces effective spatial resolution.




Windowed Reconstruction
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Windowed Reconstruction

® Fourier transform properties

= Convolution in the image domain
IS equivalent to
multiplication in the frequency domain
(and vice versa)



Hamming Filter - 2D
Wi(n) = wn) ® wn)




Hamming Filter




Pad

KY. 64 128 256
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Hamming Window & Zero-Pad
K.

00
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_ |
OOOO:




Multi-Channel (Coill)
Reconstruction



8-Channel Head Coll

Coil-8

Coil-3" COil- A Coil-5" Coil-6

Each coil element (channel) has a unique sensitivity profile — E,,,. (7)



4-Channel Cardiac C0|I

Each coil element (channel) has a unique sensitivity profile —

Coil 1 Coil 3

Coil 2




4-Channel Cardiac C0|I

Each coil element (channel) has a unique sensitivity profile —

/ Coil 1
l )

Coil 3

\
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Multi-Colil Reconstruction

k-space

I(7) — Final magnitude image

I; () — Image from jtt coil

(7]2- — Noise variance
- Depends on coll loading
- Proximity to patient
- Measured with “noise scan”
- Weights each coil’s contribution



Thanks!

e Next: fast imaging, advanced recon
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