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Qualitative Quantitative
Unitless pixel values Pixel values have units

More objective

* Measures absolute parameters
associated with pathophysiological
tissue properties and disease states

More reproducible’

« Directly compares subjects, sites,
and times

More sensitive?:3

» Detects mild or diffuse alteration of
tissue properties
Metere R et al., PLoS One 2017

2Singh P et al., Biomed Res Int2013
0 500 1000 1500 2000 Sh-Ici DO et al., Eur Heart J CVI2014
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question: is jodie foster really short or is
jennifer lawrence really tall?
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Pixel brightness has no units. We can only make relative measurements.

Brighter
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Normal tissue must be present for comparison

* Not appropriate for diffuse disease

Cannot compare pixel values from:
« different patients
« different scanners

» different times

Dependent on contrast weighting selection
* subtle changes may go undetected, e.g., during early stages of disease
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Pixel value has a unit. We can make absolute measurements.
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Qualitative

Normal tissue must be present for comparison

Cannot compare pixel values from:
« different patients

« different scanners

« different times

Dependent on contrast weighting selection

» subtle changes may go undetected, e.g., during
early stages of disease

Quantitative

No need for normal tissue: can detect diffuse

disease

Can compare pixel values, allowing:

* patient comparisons
* scanner independence

¢ longitudinal monitoring

Incorporates multiple contrast weightings

* more sensitive to subtle changes, so promising

for early detection
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Various tissue processes and tissue parameters, e.g.: St -
 Relaxation (T1, T2, T2%) e .
- Diffusion (ADC, helix angle, diffusion angle) et .
* Mechanical properties (stress, strain, stiffness) llgvdd:tm o
* Flow (tissue perfusion or flow in larger vessels) s A .
- Kinetics (Kans/permeability) v e oo :
- Tissue composition (water-fat, ECV, plasma volume) S o

Diabetic cardiomyopathy

[ (and more) /obesity/cardiac steatosis

Cardiotoxicity

Multi-parametric imaging: Lverron ovefad
Breast
« Combines parameters for comprehensive assessment Prostate

Liver fibrosis

of tissue state and accurate diagnosis

Hepatic Carcinoma

Hepatic/pancreatic steatosis
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Fabry disease Iron overload

T, w/Gd

Perfusion/DCE Native T, Post-contrast Extracellular
volume (ECV)

Bulluck H et al., Circ J 2015

. . . . (VoW W David Geffen School of Medicine
Thavendiranathan P et al., Circ Cardiovasc Imaging 2012 LucLe



Normal myocardium

Myocardial Interstitium = Myocardial interstitium
Collagen and Extracel Collagen and Extrace
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Myocardial Interstitium.
Collagen and Extraceilular Mat:

capillary
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Fibrotic Myocardium pre Gd contrast Fibrotic Myocardium post Gd contrast
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Extracellular volume fraction (ECV)

Post-Gd

hematocrit (red blood cell volume)

Schelbert EB, Messroghli DR, Radiol 2017  IZEEY bavia Geften school of Medicine
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* There are MANY pulse sequences available for mapping particular parameters

* We are not going to cover them all today (although we will see some variations at the end)

* We will cover important principles of mapping using T1, T2, and T2* as examples

- Basic equation forms for “canonical sequences”
* T1 mapping: Inversion-recovery spin echo (IR-SE)
* T2 mapping: Spin echo (SE)
« T2* mapping: Gradient echo (GE)

> Types of error: accuracy/bias, precision, repeatability

- How to choose the “best” images for quantification
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Signal model: Signal

S =A(1—Be™"/T) ACL— B)

* Equation: What are these parameters?
> Unknown A, B, T;
- Known/chosen t’s
 Acquisition: Which t’s should we choose?
* Analysis: Extracting A, B, T; by nonlinear optimization
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Signal model:

S=A(1—-Be ")

At steady state (7 - o): S = A.
« A combines proton density, T, or T,* weighting, coil sensitivity, and sin(aexc)

Immediately after preparation (t =0): S = A(1 — B).

* Assuming steady-state was reached: B =1 — cos(aprep)
> Forinversion recovery: B =1—cos(180°) =1—(—-1) =2
o For saturation recovery: B=1-—cos(90°)=1-0=1
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Signal model:

S=A(1—-Be ")

How many 7’s do we need to do mapping?
* Three unknowns: A, B, T;

* Generally need at least as many 7’s (73 in this example)

Which t’s do we need?
¢ Intuition will only get us so far

« Optimal design/information theory can tell us how to maximize precision
> e.g. Fisher information, Cramer-Rao analysis

(VoW W David Geffen School of Medicine



S =A(1—Be "/N)

T — oo: informative about A

Strongly T1-weighted images T
A(l — B) — are informative about T; (more on this later)

T — 0: informative about B
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Typically: voxelwise nonlinear least-squares fitting
S(tr) = A(1 — Be /™)
Two-point fitting:

Assume B =1 — cos(aprep)

. _ 2
argmin ) |5(2) — A(1 ~ 5o~/
T

Three-point fitting:

. . i _ /T 2
arg min 3 "|5(2) — A(1 — 5”7

T (VoW W David Geffen School of Medicine



Accurate (unbiased) Systematic bias Nonrepeatable bias

Precise

Imprecise
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Typically: voxelwise nonlinear least-squares fitting
S(tr) = A(1 — Be /™)

Two-point fitting:

Assume B =1 — Cos(aprep) _ Potential nonrepeatable bias

. _ 2
argmin ) |5(2) — A(1 ~ 5o~/
T

Three-point fitting:

arg min ZlS(T) — A(l — Be—T/T1)|2

aA’B’Tl (MY oavid Getfen School of Medici
More params. ~ less precision T



S =A(1—Be "/N)

T — oo: informative about A

A(l — B) . Which of these 1’s is most informative about T;?
\ (Which of these 7’s will maximize T; precision?)

T — 0: informative about B
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How much information does S = A(1 — Be~*/™t) carry about T1?

Under very narrow conditions*, Fisher information is

2

I(T1) = 0T1

In other words: how sensitive is S to T; ?
* We will want to choose the t that maximizes sensitivity/information
o This maximizes T, precision!

« I(T,) is common notation, but is not just a function of T;, as we will see
*single parameter, single data point, Gaussian noise
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g |2 S=A(1-Be )

> T

A
% A(1 — Be™™/™) I(Ty) o« 2e~2%/N
oT, 0T,
= — A—f Te_T/Tl T
Tl Consistent with our intuition!
There is no information about Tj;:
A12R2 * at steady-state, when S = A
I(Tl) — Al 12p-2t/T1 * right after prep, when S = A(1 — B)
T14 But there is information in between!
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2 To maximize I(T;) over T, we need to take

I(Ty) = aa_; another partial derivative over t and set to O:
1
irze—zT/T1 —-0
s 0 o ot
o7 = 37 A(1—Be™") 27e~27/Ts
1 1 T (Tl - T) = O
1
= —A—BTe_T/Tl
T?
A 2pR2
1(T;) =I ;4 120-27/T
1
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S=A(1—-Be "N)

T — oo: informative about A

N\

T = T;: informative about T; T

T — 0: informative about B
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N\

T = T;: informative about T; T

T — 0: informative about B
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We cannot wait forever, so what is most efficient?
SNR efficiency (SNRe):

SNRe = MR _ _#
e = =
VT oVT

Scan time is included, because shorter scans can be repeated and averaged

What are the SNR and SNRe of our parameter maps?
» The Cramér—Rao bound (a2 > I~1) is helpful here:

g2 >1"1 - SNRe <, \/; so we should maximize information “rate” I /T
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1)
T

Assuming* scan time « longest t, let’'s maximize —, the information rate on A:

S=A(1—-Be "T)

I(4) 105/0AI> (1 —Be /™)
T B T B T

(1 N Ze_T/Tl)Z / —
T

> T
0 T, 2T, 3T, 4T, 5T,

Last inversion time should be 2-5x T1 for good SNR efficiency
*Ignores recovery time required after reading out
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Simplified version of Fisher information

* For one parameter at a time
> e.g., information on T1 with known A, B
* Forone T at a time

- Doesn’t take entire set of timings into
account

* Does not take into account which
parameters we care about clinically

> T1 more than A or B

Complete Fisher information/Cramér—Rao analysis:

S(4, B, T;; ©) for sequence timings/params t = [14, Ty, ..., Ty]"

ST
A
asT
0B
asT

I([A, B, Tl]T) =

9T, |
Var(4)

¢ =1([4, B, T,]")"t = | Cov(B, 4)

ds as as
9A 0B 4T,

Cov(4,B) Cov(4,Ty)
Var(B)  Cov(B,T;)

Cov(Ty,A) Cov(T;,B) Var(Ty)

T = arg min Var(T,)
T
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Basic form of equation for spin-echo sequences:

Signal Tg — 0: informative about A
A /
S = Ae Te/T2 Tg ~ T,: informative about T,

A combines: — TE

° proton density %

> coil sensitivity —_ 1 (Tz)

° sin(@exc)

— TE

TE - TZ
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The same as T2 mapping, but with a gradient-echo sequence:

Signal Tg — 0: informative about A
A /
S = Ae Te/T2 Tg ~ T, informative about T
A combines: —— ) TE

° proton density
> coil sensitivity —_—1 (Tz* )

° Sin(“exc)

—_TE

TE :TZ*
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A T1 recovery

time
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Standard approach: “freeze” the motion

I i
* Synchronize imaging with ECG
» Ask the patient to hold their breath
» Often: capture as few processes as possible
Incomplete list of options:
MOLLI® shMOLLI? SASHA3 SAPPHIRE*
T,prep-SSFP® QALASS® IR-T,prep’ SR-T,prep8

Fingerprinting®

IMessroghli DL et al., MRM 2004 Z2Piechnik SK et al., JCMR 2010 3Chow K, et al., MRM 2014 “Weingartner S et al., SCMR 2013

5Giri S et al., JCMR 2009 6Kvernby S et al., JCMR 2014 Blume U et al., JMRI 2010 8Akcakaya M et al., MRM 2015
9Hamilton JI et al., MRM 2016

(VoW W David Geffen School of Medicine



What if we take a shortcut, collecting images throughout the same recovery period?

180°

RF /i

T Classic IR
+Mz
Look-Locker

S =A(1-Be ™)

-lApparent“ T1 (T1*)

Inversion Time (TI)—>»

Post-fitting conversion:
adapted from mri-q.com Tl ~ (B/A — 1)T1*
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Breath-hold, ECG-triggered T1 maps in 11—-17 heart beats
LL,

LL, LL;

" recovery - — T —
1 H L1 L —

0 period s |

| N R N TR Y RN R Y R Y O Y Y RN N Y N N Y N

_TI" v v B J = L v v B L v v = R v v v

4mmmm———) time between inversions

Raw magnitude images sorted by inversion time

Pixel-wise fit

T1 ma_i:)
Messroghli DR et al. Magn Reson Med 2004
Kellman P, et al. J Cardiovasc Magn Reson 2014

TI (ms)
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Breath-hold, ECG-triggered T2 maps in 7 heart beats

T2 prep .

180° 180°

n H H il

TE/4

T:/2 TE/4

Stores T2 weighting in
longitudinal magnetization

Image 2

JL:—

B ——

— S
T2 =24
o W Tz -

. _ %

.
T2prep = 55 F =

TD

Giri S et al., J Cardiovasc Magn Reson 2009

&«

Image 1 T1 recovery T1 recovery Image 3
B T2 prep (non selective) \
Image 1 B ,_SSFP readout X
st
T2prep=0 p -
TD . w5

|

- FitT2 & MO

for each pixel

JERIRIN

J
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Breath-hold, ECG-triggered T1-T2 maps in

T
i H H H | H 1 2500
T | Ry f f
B0 i { { i
g 1 rfl I
o L 1500
L — L MRF
6.2 T T T T - T T
J T T T T T T T 1000
B ey .
i | L | 0
a 0 2 .“m"]lc 12 14 16 18 2500
2000
HB1 HB 2 HB3 HB 4
s ™ L™ [ e [ . ‘ 1500
HE S HB 6 HB7 H8 8 Conventional
[ & N T -
HB S HB 10 HB 11 HB 12
e [ I~ [ Rl Bl -
HB 13 HB 14 HB 15 HB 16

Hamilton JI et al., Magn Reson Med 2017 David Geffen School of Medicine
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Multidimensional framework for motion-resolved quantitative imaging

* e.g., free-breathing, non-ECG myocardial T;-T, mapping

\/\/\/\/\/\/\/ cardiac motion
/" \/ respiration
f_ r f_ T, recovery
\ \ (G T, decay

time >

respiration
SEISESEV )} S
3 t‘- C" % & ) cardiac
time > T,
recovery
Multiple overlapping dynamics... ...reorganized as multiple time dimensions (“tasks”)

Christodoulou AG et al., Nature BME 2018 D Geften Schoal of Medicine



6-D imaging example:

2 spatial dimensions + cardiac motion + respiration + T, recovery + T,prep duration

Image tensor Factored basis function representation

Reconstructs a low-rank/factorizable image tensor
(grows ~linearly, not exponentially)

Christodoulou AG et al., Nature BME 2018

2500
ms

Oms

75 ms

0ms
Processes can be isolated Produces co-registered,
after image reconstruction synchronized cine maps
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