Project Discussion

M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2024.05.02

Department of Radiological Sciences

David Geffen School of Medicine at UCLA

MRI Research

Technical Developments

Physics
Contrast mechanisms
Mathematical models
Hardware
Data acquisition
Data reconstruction
Data processing
Quantitative analysis
Data integration
Software

Clinical Applications

Anatomical imaging Functional imaging Multi-modal imaging Quantitative imaging

for
Diagnosis / screening
Treatment planning
Procedural guidance
Treatment assessment
Monitoring

Course Topics

- RF Pulse Design
- Pulse Sequences
- Fast Imaging Trajectories
- Parallel Imaging
- Compressed Sensing
- Deep Learning Recon
- Motion in MRI
- Susceptibility Imaging

- Invited Speakers
 - Body MRI
 - Lung MRI

Final Project

- ~5 weeks; start thinking now!
 - come to office hours
- Can be your own research
 - incorporate course topics
- Can be from list of ideas
 - can combine several ideas
- Components
 - Proposal (1 page), due 5/10 Fri by 5 pm
 - Abstract (1 page), due 6/7 Fri by 5 pm
 - Presentation + Q&A, 6/11 Tue 10-12

- Pulse sequences
 - bSSFP catalyzation
 - bSSFP banding artifact reduction
 - Design of variable flip-angle TSE
 - Simulation of diffusion-weighted SSFP
 - RF + seq simulator (Bloch, EPG)
 - MR fingerprinting
 - Motion and flow encoding
 - Gradient waveform optimization

- RF pulse design
 - Low SAR / wide bandwidth adiabatic pulse
 - Velocity selective RF pulse
 - 2D excitation RF pulse
 - Spectral-2D spatial pulse design (e.g., fat suppression + 2D excitation)
 - Low SAR multi-band RF pulse (e.g., for simultaneous multi-slice imaging)

- Fast imaging
 - Trajectory design (EPI, PROP, spiral, etc.)
 - Gradient waveform optimization
 - Fast 3D re/gridding (or nuFFT) recon
 - Gradient measurement / calibration
 - Off-resonance correction

- Motion compensation
 - Self navigation
 - Model-based reconstruction

- Image reconstruction
 - Coil combination (preserve phase, etc.)
 - Parallel imaging (e.g., GRAPPA vs. SENSE)
 - Sparsity and low-rank constraints
 - k-t methods

- Image analysis
 - Measure/reduce geometric distortion in DWI
 - B₁+ mapping with improved spatial interpolation
 - Denoising
 - Multi-component tissue signal modeling

- Deep learning / machine learning
 - Image enhancement / reconstruction
 - Super-resolution MRI
 - Texture analysis for multi-parametric MRI
 - Prediction models for disease diagnosis
 - Image segmentation
 - Contrast synthesis

- Quantitative imaging
 - Relaxometry (T₁, T₂, T₂* mapping)
 - Diffusion
 - Perfusion
 - Fat/water
 - Temperature
 - Tissue stiffness
 - Acquisition and signal modeling/fitting

Final Project

- Proposal due 5/10 Fri by email
 - Template on course webpage
 - Scope should be feasible in 4-5 weeks
- Titles of past projects listed in Lecture 1
- Ask about sample datasets
- Come to office hours!
 - Email to make an appointment

Thanks!

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab