

M229 Advanced Topics in MRI Shu-Fu Shih 5/16/2023

Compressed Sensing MRI

Today's topics

- k-Space properties review
- Compressed sensing MRI (with code examples)
 - Sparse representation
 - Incoherent artifacts
 - Nonlinear reconstruction
- Compressed sensing MRI applications

Multi-coil Arrays

Cartesian SENSE $m_1(\vec{x_1}) = C_1(\vec{x_1})m(\vec{x_1}) + C_1(\vec{x_2})m(\vec{x_2})$

$m_2(\vec{x_1}) = C_2(\vec{x_1})m(\vec{x_1}) + C_2(\vec{x_2})m(\vec{x_2})$

Review: Parallel imaging reconstruction

- Different parallel imaging approaches:
 - SENSE (image-based)
 - GRAPPA (k-space-based)

Parallel imaging utilizes information from multiple coils to accelerate MRI

Accelerated MR

- MRI acquisition time is limited by physics and hardware constraints
- followed by advanced reconstruction
- Accelerated MRI approaches
 - (1) Parallel imaging
 - Use information from multiple coils
 - (2) Compressed sensing
 - Use sparsity constraints as prior information
 - (3) Deep learning
 - Use a nonlinear neural network trained with a large dataset
 - ... and more

MRI scans can be accelerated by acquiring undersampled k-space data

Underdetermined system Undersampled Fully sampled ky ky **k**_x

Images with the same undersampled k-space data

Use prior information about the images to help us solve the underdetermined problem

Compressed sensing MRI

- Compressed sensing MRI can reconstruct an image with high fidelity from undersampled k-space data given
 - (1) the image has transform sparsity (or a sparse representation in some transform domain)
 - (2) the k-space sampling pattern generates incoherent artifacts in the sparse transform domain
- Compressed sensing MRI usually involves a nonlinear reconstruction method to recover the image

- Many images have a sparse representation in some transform domain
- Example 1: Discrete cosine transform (DCT)
 - JPEG uses DCT for image compression

Original image

2D DCT coefficients

$X_k = \sum_{n=1}^{N-1} x_n \cos\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)k\right] \qquad for \ k = 0, \dots N-1$

Compressed image (3.7-fold) by preserving large DCT coefficients

- Example 2: Wavelet transform
 - JPEG 2000 uses Wavelet transform for image compression

Original image

2D Wavelet coefficients

Compressed image (5.3-fold) by preserving large Wavelet coefficients

Example 3: Wavelet transform for a brain image

Original image

2D Wavelet coefficients

Compressed image (4.8-fold) by preserving large Wavelet coefficients

Many images have a sparse representation in some transform domain

Brain image

2D Wavelet coefficients of a brain image

Noisy image

2D Wavelet coefficients of a noisy image

Incoherent artifacts

generate incoherent artifacts in the sparse transform domain

The second requirement for CS MRI is that the undersampling pattern should

(Figure from: Lustig et al., MRM 2007)

Incoherent artifacts

Inverse Fourier transform

Fourier transform

Image domain

Equidistance vs. Random undersampling

Wavelet transform

Inverse Wavelet transform

Wavelet domain

<u>See code example 05</u>

LO, L1 and L2 norm

- Vector norm: a method to measure the length of a vector
- L_0 norm ($\| x \|_0$): number of non-zero entries
- L_1 norm ($\| x \|_1$): sum of absolute values of the entries $\|x\|_{1} = |x_{1}| + |x_{2}| + \ldots + |x_{n}|$
- L_2 norm ($\| x \|_2$): square root of sum of squared values of the entries

$$||x||_{2} = \sqrt{|x_{1}|^{2} + |x_{2}|^{2} + \ldots + |x_{n}|^{2}}$$

LO, L1 and L2 norm $v_1 = \begin{bmatrix} 5 \\ 0 \\ 0 \\ 2 \\ -3 \\ 0 \end{bmatrix} \quad v_2 = \begin{bmatrix} -1 \\ 2 \\ 3 \\ 2 \\ -4 \\ 2 \end{bmatrix}$

 Two vectors with similar energy (L₂ (L₁ norm)

•
$$|| v_1 ||_2 = \sqrt{38}$$

• $|| v_1 ||_1 = 10$
• $|| v_1 ||_0 = 3$

•
$$|| v_2 ||_2 = \sqrt{38}$$

• $|| v_2 ||_1 = 14$
• $|| v_2 ||_0 = 6$

• Two vectors with similar energy (L₂ norm) can have different levels of sparsity

- Suppose we have a 2D vector $x = [x_1, x_2]$
- Exercise 1: $argmin_x$ $|x|_2$ $s.t. \quad 2x_2 = x_1 + 2$
- Exercise 2: $argmin_x$ $|x|_1$ <u>s.t.</u> $2x_2 = x_1 + 2$ Example 3: $argmin_x$ $||x||_0$ *s*.*t*. $2x_2 = x_1 + 2$

- L₂ norm minimization: Find a solution with smallest energy
- L₁ and L₀ norm minimization: Find a sparse solution

Mathematical formulation

Our goal:

Find an image that has the sparsest coefficients in the Wavelet domain and the image is consistent with the undersampled k-space data

Turn into an optimization problem

Convex relaxation <u>using L1 norm</u>

 $argmin_{x}$

Mathematical formulation

 $argmin_{x}$ | Wx

subject to $\|Fx - y\|_{2} < \epsilon$

Use Lagrangian form

Explicitly include an sampling operator

- W: Wavelet transform operator
- x: reconstructed image
- F: Fourier transform operator
- y: acquired undersampled k-space data
- λ : regularization parameter
- U: k-space sampling pattern

argmin_x $\|Fx - y\|_{2}^{2} + \lambda \|Wx\|_{1}$

 $argmin_{x} \| UFx - y \|_{2}^{2} + \lambda \| Wx \|_{1}$

Mathematical formulation

 $argmin_{x}$ | Wx

subject to $\|Fx - y\|_{2} < \epsilon$

Use Lagrangian form

Explicitly include an sampling operator

 $argmin_{r}$

W: Wavelet transform operator

- x: reconstructed image
- F: Fourier transform operator
- y: acquired undersampled k-space data
- λ : regularization parameter
- U: k-space sampling pattern

argmin_x $\|Fx - y\|_{2}^{2} + \lambda \|Wx\|_{1}$

$UFx - y \parallel \frac{2}{2} + \lambda \parallel Wx \parallel \frac{1}{2}$

Cost function

Optimization algorithm

- Solving min $\|UFx y\|_{2}^{2} + \lambda \|Wx\|_{1}$ is non-trivial since the cost function is not smoothed at Wx=0
- Different approaches have been used to solve min $\|UFx y\|_{2}^{2} + \lambda \|Wx\|_{1}$
 - Conjugate gradient descent¹
 - ADMM^{2,3}
 - Primal-dual algorithm⁴

[1] Lustig et al., Magn Reson Med. 2007;58(6):1182-95 [2] Wang et al., SIAM J Imag Sci. 2008;1(3):248-72 [3] Ramani et al., IEEE Trans Med Imaging. 2011;30(3):694-706 [4] Chambolle et al., J Math Imaging Vision. 2011;40(1):120-45

Optimization algorithm

Conjugate gradient descent

$$argmin_m \quad f(m) = \| UFm - y \|_2^2 + \lambda$$

% Initialization $k = 0; m = 0; g_0 = \nabla f(m_0); \Delta m_0 = -g_0$ % Iterations while $(||g_k||_2 < \text{TolGrad and } k > \text{maxIter})$ { % Backtracking line-search t = 1; while $(f(m_k + t\Delta m_k) > f(m_k) + \alpha t \cdot Real(g_k^*\Delta m_k))$ $\{t = \beta t\}$ $m_{k+1} = m_k + t\Delta m_k$ $g_{k+1} = \nabla f(m_{k+1})$ $\gamma = \frac{||g_{k+1}||_2^2}{||g_k||_2^2}$ 1156112 $\Delta m_{k+1} = -g_{k+1} + \gamma \Delta m_k$ k = k + 1

Wx

 g_k : gradient at kth iteration m_k : updated image result at kth iteration TolGrad: stopping criteria MaxIter: stopping criteria on iterations α , β : line search parameters

From: Lustig et al., MRM 2007

 Let's run codes to reconstruct images using compressed sensing MRI... (see <u>code example 06</u>)

Zero-filled

Compressed sensing reconstruction

Compressed sensing MRI

- Compressed sensing MRI can reconstruct an image with high fidelity from undersampled k-space data given
 - (1) the image has transform sparsity (or a sparse representation in some transform domain)
 - (2) the k-space sampling pattern generates incoherent artifacts in the sparse transform domain
- Compressed sensing MRI usually involves a nonlinear reconstruction method to recover the image

Choice of regularization parameters argmin_x $\| UFx - y \|_{2}^{2} + \lambda \| Wx \|_{1}$

- parameters.
- Larger weights on the sparsity term (larger λ):
 - Better suppression on noise or artifacts / Improved perceived SNR
 - Features more likely to be over-smoothed / Resulting in images with artificial appearance
- The regularization parameter is dataset-dependent
- Methods for automatic regularization parameters selection have been investigated

Many compressed sensing methods require manually tuning of regularization

Compressed sensing + Parallel imaging

- SENSE reconstruction)
- Compressed sensing: Use sparsity constraints
- Combination of these two techniques:

Coil sensitivity maps

Coil combined image

Multi-coil k-sapce data

• Parallel imaging: Use information from multiple coils (e.g., coil sensitivity in

argmin_x $\| UFSx - y \|_{2}^{2} + \lambda \| Wx \|_{1}$

Compressed sensing + Parallel imaging

- Sampling trajectory:

• The fully sampled region can be used to estimate coil sensitivity maps • The overall sampling scheme needs to generate incoherent artifacts

Coil compression

- A problem in applying compressed sensing reconstruction in some applications is the increased memory requirement and computational complexity due to a large number of coils.
- reconstruction.

Reference (32 coil elements)

Coil-compressed image (6 virtual coils)

• Coil compression (e.g., singular value decomposition-based technique) has been developed to reduce the number of coils before compressed sensing

(Figures from: Zhang et al., MRM 2013)

- T₂ values in the knee cartilage have been used to detect disease- and treatment changes in articular cartilage.
- T₂ quantification in the knee cartilage can help depict early cartilage degeneration.
- Challenges: Conventional multi-echo spin echo-based sequences are slow

From previous lecture slide

- Acceleration strategy
 - (1) Use a faster sequence: DESS (double/dual echo steady state)
 - (2) Use compressed sensing to accelerate

An extension to the gradient-spoiled GRE which acquires both SSFP-FID and SSFP-Echo

Cost functio argmi

The difference between the two contrasts can be used to quantify T_2

Variable density sampling

- U: k-space sampling pattern
- F: Fourier transform operator
- S: coil sensitivity maps
- x: reconstructed image
- y: acquired undersampled k-space data
- W: Wavelet transform operator
- D: total variation operator
- λ_1, λ_2 : regularization parameters

$$n_{x} \parallel UFSx - y \parallel_{2}^{2} + \lambda_{1} (\parallel Wx_{fid} \parallel_{1} + r \parallel Wx_{echo} \parallel_{1} + \lambda_{2} (\parallel Dx_{fid} \parallel_{1} + r \parallel Dx_{echo})$$

GRAPPA 2 7 min 48 sec Compressed sensing 4min 4sec

0ms

(Figures from: Shih et al., ISMRM 2023)

- Rapid knee cartilage T₂ mapping

 - Incoherent measurement: variable density random sampling
 - **Optimization function:** $argmin_x \parallel UFSx$
 - Reconstruction: non-linear conjugate gradient method

<u>Constraint:</u> Sparsity in Wavelet transform and sparsity in total variation

$$-y \|_{2}^{2} + \lambda_{1}(\| Wx_{fid} \|_{1} + r \| Wx_{echo} \|_{1}) + \lambda_{2}(\| Dx_{fid} \|_{1} + r \| Dx_{echo} \|_{1})$$

U: k-space sampling pattern F: Fourier transform operator S: coil sensitivity maps x: reconstructed image y: acquired undersampled k-space data W: Wavelet transform operator D: total variation operator λ_1, λ_2 : regularization parameters

- cardiac cycle
- resolution and image quality requirements

Cardiac cine imaging for information of the heart function throughout the

Challenges: accelerating data acquisition without compromising the high

(Figure from: Otazo et al., MRM 2015)

• Sparsity in the x-f space

(Figures from: Tsao et al., JMRI 2012)

k-t sampling pattern

Raw Data

image

k-t FOCUSS results

(Figures from: Tsao et al., JMRI 2012 and Jung et al., MRM 2009)

- k-t FOCUSS¹ (k-t FOCal Underdetermined System Solver)
 - <u>Application</u>: cardiac cine imaging
 - <u>Constraint</u>: sparsity in the x-f space
 - Incoherent measurement: k-t undersampling
 - Optimization function: $min_{\rho} | y D$

<u>Reconstruction: reweighted quadratic optimization</u>

y: acquired k-space data

- D: k-t sampling pattern
- F: Transform operator between k-space and x-f space
- S: coil sensitivity maps
- ρ : reconstructed x-f space
- λ : regularization parameter

[1] Jung et al., Magn Reson Med. 2009;61(1):103-16

- Radial undersampling results in incoherent artifacts

Radial MRI with inherent motion robustness can be used for free-breathing MRI

(Figure from: Feng et al., JMRI 2022)

- Stack-of-radial MRI provides self-navigation to track breathing motion We can group the k-space data into different motion states

(Figure from: Feng et al., MRM 2016)

(Figure from: Feng et al., MRM 2016)

- using compressed sensing)
 - <u>Application</u>: free-breathing abdominal imaging
 - <u>Constraint: temporal finite differences (or total variation) in dynamic dimension</u>
 - Incoherent measurement: undersampled golden-angle radial MRI
 - **Optimization function:** min_r
 - <u>Reconstruction: non-linear conjugate gradient</u>

XD-GRASP¹ (Golden-angle radial MRI with reconstruction of extra motion-state dimensions

$$FCx - y \|_{2}^{2} + \lambda_{1} \| S_{1}x \|_{1} + \lambda_{2} \| S_{2}x \|_{1}$$

[1] Feng et al., Magn Reson Med. 2016;75(2):775-88

Compressed sensing MRI

- Limitations:
 - Requiring high computational complexity to solve the nonlinear reconstruction problem
 - Reconstruction result is dependent on the choice of regularization parameters
- Other related constrained reconstruction methods
 - Dictionary-based compressed sensing MRI
 - MRI reconstruction using low-rank constraints

Take home message

- 3 main components in compressed sensing MRI
 - The image has a sparse representation in some transform domain
 - The k-space sampling trajectory generates incoherent artifacts in the sparse transform domain
 - It involves a nonlinear reconstruction method

Take home message

- If we want apply compressed sensing to accelerate an application, check:
- (1) Can the images be sparsified in a certain (transform) domain?
 - Wavelet transform
 - Spatial total variation in images
 - Total variation in temporal frames
 - x-f space

- (2) Can the sampling pattern generate incoherent artifacts?
 - Variable density sampling pattern
 - Radial acquisition
 - Spiral acquisition

Thanks

- Next time
 - Deep learning MRI reconstruction

Shu-Fu Shih sshih@mednet.ucla.edu