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Today’s topics

 kK-Space properties review

 Compressed sensing MRI (with code examples)
e Sparse representation
* |ncoherent artifacts
 Nonlinear reconstruction

 Compressed sensing MRI applications
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Review: Parallel imaging reconstruction

» Parallel imaging utilizes information from multiple coils to accelerate MRI
» Different parallel imaging approaches:

« SENSE (image-based)

« GRAPPA (k-space-based)



Accelerated MRI

 MRI acquisition time is limited by physics and hardware constraints

 MRI scans can be accelerated by acquiring undersampled k-space data
followed by advanced reconstruction

 Accelerated MRI approaches
* (1) Parallel imaging
* Use information from multiple coils
e (2) Compressed sensing
* Use sparsity constraints as prior information
e (3) Deep learning
 Use a nonlinear neural network trained with a large dataset
e ... and more
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Use prior information about the images to
help us solve the underdetermined problem



Compressed sensing MRI

 Compressed sensing MRI can reconstruct an image with high fidelity from
undersampled k-space data given

* (1) the image has transform sparsity (or a sparse representation in some
transform domain)

* (2) the k-space sampling pattern generates incoherent artifacts in the
sparse transform domain

 Compressed sensing MRI usually involves a nonlinear reconstruction method
to recover the image



Sparse representation

 Many images have a sparse representation in some transform domain
 Example 1: Discrete cosine transform (DCT) U
_ _ X = Z X, COS [— (n +—) k]

 JPEG uses DCT for image compression = N\ 2

Compressed image (3.7-fold)
by preserving large DCT coefficients

N-1
fork=0,..N-1
n

Original image 2D DCT coefficients

See code example 01



Sparse representation

 Example 2: Wavelet transform
 JPEG 2000 uses Wavelet transform for image compression

Compressed image (5.3-fold)

Original image 2D Wavelet coefiicients by preserving large Wavelet coefficients

m
VY ‘

See code example 02



Sparse representation

 Example 3: Wavelet transform for a brain image

Compressed image (4.8-fold)
by preserving large Wavelet coefficients

Original image 2D Wavelet coefficients

See code example 03



Sparse representation

 Many images have a sparse representation in some transform domain

2D Wavelet coefficients 2D Wavelet coefficients

Brain image Noisy image

of a brain image of a noisy image

AT R I R P A S SR L LS
o S L SRR G AR
¥ ,r..':-.-;.f',(,? s : LRI ‘:"ﬂ." S

L]

EISE

o
)' k‘ - -
o 5 L\ » N
n " s 'y »
LA S, :‘_f' S 2
TSy i 3

Nt %

’&._'. ._,» :...
A A
MeE

See code example 04




Incoherent artifacts

 The second requirement for CS MRI is that the undersampling pattern should
generate incoherent artifacts in the sparse transform domain
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( Figure from: Lustig et al., MRM 2007 )



Incoherent artifacts

K-space domain

Equidistance vs. Handom undersampling

DS <

Inverse
Fourier transform

ﬁ
_

Fourier transform

Corresponding signal in image domain

Images from random undersampling

Wavelet transform

ﬁ
_

Inverse
Wavelet transform

Wavelet domain

Sparse signal in Wavelet domain

Wavalet coefficients from random undersampling

See code example 05




LO, L1 and L2 norm

* Vector norm: a method to measure the length of a vector

» Lonorm (|| x || ): number of non-zero entries

+ Lynorm (|| x || ): sum of absolute values of the entries

lxll, =[x |+ |x|+...+ ]|

n

» Lanorm (|| x || ,): square root of sum of squared values of the entries

2 2
lxll, =1/ x| + 0| +...+

P

n



LO, L1 and L2 nhorm
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* Two vectors with similar energy (L2 norm) can have different levels of sparsity
(L1 norm)



Exercises

» Suppose we have a 2D vector x = |x;, X, ]

o Exercise 1: argmin, ||x| ‘2

S.I. 2x2=x1+2

. Exercise 2. argmin, ||x||, t
s.t. 2x=x;+72 ..o;:if:'f”} ’:‘:11‘.:’«.. | xi| + | x| =7
 Example 3: argminx ‘ ‘x‘ ‘O

A Z.X2=.xl+2




Exercises

* Lo norm minimization: Find a solution with smallest energy

| 1 and Lo norm minimization: Find a sparse solution



Mathematical formulation

Our goal:

Turn into an
optimization problem

q

Convex relaxation

using L1 norm

q

argmin,

subject to

argmin,

subject to

Find an image that has the sparsest coefficients in the Wavelet domain
and the image is consistent with the undersampled k-space data

| Wx ||
H Fx—yH2<€

W: Wavelet transform operator
X: reconstructed image
F: Fourier transform operator

| | Wx | | y: acquired undersampled k-space data

” Fx—yH2<€



_ _ W: Wavelet transform operator
Mathematical formulation ot
y: acquired undersampled k-space data

A: regularization parameter
U: k-space sampling pattern

argmin, || Wx || 1
subject to H Fx—Yy H <€

Use Lagrangian form

—>  argmin, || Fx—y |+ [ wx],

Explicitly include an
sampling operator

— argmin, H Ubx —y ” 2""1 | wx | 1




_ _ W: Wavelet transform operator
Mathematical formulation ot
y: acquired undersampled k-space data

A: regularization parameter
U: k-space sampling pattern

argmin, || Wx || 1
subject to H Fx—Yy H <€

Use Lagrangian form

—>  argmin, || Fx—y |+ [ wx],

Explicitly include an
sampling operator

— argmin, H Ubx —y ” 2""1 | wx | 1

Cost function




Optimization algorithm

e Solving min |Urx=y| +4 | wx], is non-trivial since the cost function is not
smoothed at Wx=0

» Different approaches have been used to solve min || Urc=y | +2 | wx],
 Conjugate gradient descent!
« ADMMZ23
* Primal-dual algorithm?

[1] Lustig et al., Magn Reson Med. 2007;58(6):1182-95

[2] Wang et al., SIAM J Imag Sci. 2008;1(3):248-72

[3] Ramani et al., IEEE Trans Med Imaging. 2011;30(3):694-706
[4] Chambolle et al., J Math Imaging Vision. 2011,40(1):120-45



Optimization algorithm

* Conjugate gradient descent

argmin,,  fom)="|| UFm—y || ~+2 || wx ||,

% Initialization
k=0;m=0; gy = Vf(mg); Amg = —g
% Iterations

while (||gk||2 < TolGrad and k > maxIter) {
% Backtracking line-search g,: gradient at kt" iteration

t = 1; while (f (mg+tAmyg) > f(11'11<)+0ll‘-38611(gzAmk)) m,: updated image result at kth iteration
{t — 131} TolGrad: stopping criteria

Maxlter: stopping criteria on iterations

a, [: line search parameters

My = My + TAMy
gk+1 = Vf(mg4q)

2
. ||gk+1||2

V= 18k 115
AMy 1 = —Zks1 +yAmy
k=k+1}

From: Lustig et al., MBRM 2007




Compressed sensing MRI

* |Let’s run codes to reconstruct images using compressed sensing MRI...
see code example 06

Compressed sensing
Zero-filled reconstruction

Undersampling mask




Compressed sensing MRI

 Compressed sensing MRI can reconstruct an image with high fidelity from
undersampled k-space data given

* (1) the image has transform sparsity (or a sparse representation in some
transform domain)

* (2) the k-space sampling pattern generates incoherent artifacts in the
sparse transform domain

 Compressed sensing MRI usually involves a nonlinear reconstruction method
to recover the image



Choice of regularization parameters

argmin, H UFx —y H z+ A || Wx || 1

 Many compressed sensing methods require manually tuning of regularization
parameters.

 Larger weights on the sparsity term (larger A):
» Better suppression on noise or artifacts / Improved perceived SNR

* Features more likely to be over-smoothed / Resulting in images with artificial
appearance

* [he regularization parameter is dataset-dependent

 Methods for automatic regularization parameters selection have been
iInvestigated



Compressed sensing + Parallel imaging

* Parallel imaging: Use information from multiple coils (e.g., coil sensitivity Iin
SENSE reconstruction)

 Compressed sensing: Use sparsity constraints

 Combination of these two techniques:

Coil sensitivity maps

argmin,. | UFLSLX —y ” i + /1 H Wx H 1

I

Coil combined image

Multi-coll k-sapce data



imaging
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* The fully sampled region can be used to estimate coll sensitivity maps
* The overall sampling scheme needs to generate incoherent artifacts

Compressed sensing + Parallel

« Sampling trajectory



Coil compression

* A problem in applying compressed sensing reconstruction in some

applications Is the increased memory requirement and computational
complexity due to a large number of coills.

* Coil compression (e.g., singular value decomposition-based technique) has

been developed to reduce the number of colls before compressed sensing
reconstruction.

Coil-compressed image
(6 virtual coils) Error 20x

Reference (32 coil elements)

(Figures from: Zhang et al., MRM 2013 )



Example (1): Knee T2 mapping

* 2 values in the knee cartilage have been used to detect disease- and
treatment changes In articular cartilage.

» T2 quantification in the knee cartilage can help depict early cartilage

degeneration.

* Challenges: Conventional multi-echo spin echo-based sequences are slow

spin-echo images

Multi-echo Spin Echo

90° 180° 1809° 18090

~_
~

\\\ T2 decay

~——

TE1§= 2t TE7~=41\ EEas= b7

TR

SE1 SE> SEz

Can perform T2 mapping.

From previous
lecture slide



Example (1): Knee T2 mapping

* Acceleration strategy

* (1) Use a faster sequence: DESS (double/dual echo steady state)

* (2) Use compressed sensing to accelerate

Variable density sampling

An extension to the gradient-spoiled GRE which
acquires both SSFP-FID and SSFP-Echo

Double Echo (DESS or FADE) Sequence

-\

" Spoiler
Gradient

Spoiler
Gradient

Cost function

argmin,

The difference between the two contrasts
can be used to quantify T»

U: k-space sampling pattern

F: Fourier transform operator

S: coil sensitivity maps

X: reconstructed image

y: acquired undersampled k-space data
W: Wavelet transform operator

D: total variation operator

Ay, Ay regularization parameters

‘ UFSX_y H z_l'/ll( || foid || 1+ r H ercho

+45( || Dxy, ” 1 + 7 H Dx,.,

)

1

)

1




mapping

Compressed sensing

Knee T>2

Example (1)

GRAPPA 2
/min 48 sec

4min 4sec

120ms

i 2
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Shih et al., ISMRM 2023 )

(Figures from



Example (1): Knee T2 mapping

 Rapid knee cartilage T2 mapping

» Constraint. Sparsity in Wavelet transform and sparsity in total variation

* /ncoherent measurement: variable density random sampling

)

1

echo

UFSx —y H z+/11( H Wiy

) +45( H Dxj;q H 1"‘ r H DX,epo

* Optimization function: argmin, |+ W

. . . : U: k-space sampling pattern

* Reconstruction: non-linear conjugate gradient method | r: Fourier transform operator

S: coil sensitivity maps

X: reconstructed image

y: acquired undersampled k-space data
W: Wavelet transform operator

D: total variation operator

Ay, A»: regularization parameters




Example (2): Cardiac cine imaging

* Cardiac cine imaging for information of the heart function throughout the
cardiac cycle

 Challenges: accelerating data acquisition without compromising the high
resolution and image quality requirements

P

& &8

(Figure from: Otazo et al., MRM 2015 )



Example (2): Cardiac cine imaging

e Sparsity in the x-f space

(Figures from: Tsao et al., JMRI 2012 )



Example (2): Cardiac cine imaging

k-t sampling pattern
Fully sampled
Raw Data
6x acceleration “g 19
with zero-padding = wy
5 # 4 "

frame

k-t FOCUSS results

(Figures from: Tsao et al., JMRI 2012 and Jung et al., MRM 2009 )



Example (2): Cardiac cine imaging

¢ k-t FOCUSS!' (k-t FOCal Underdetermined System Solver)
* Application: cardiac cine imaging - Transform operator betweer

K-space and x-f space
S: coil sensitivity maps
p: reconstructed x-f space

» Constraint: sparsity in the x-f space J: reqularization parameter

* /ncoherent measurement: k-t undersampling

S . | 2
» Optimization function: min, ||y =DFSp || +7 || lﬁ

min,, H y — DFS(py + Ap) H z'l"l H Ap H 1

» Reconstruction: reweighted quadratic optimization

[1] Jung et al., Magn Reson Med. 2009;61(1):103-16



Example (3): Free-breathing radial MRI

 Radial MRI with inherent motion robustness can be used for free-breathing MRl
» Radial undersampling results in incoherent artifacts

Linear radial MRl

Golden-angle
radial MRI

(Figure from: Feng et al., JMRI 2022 )



Example (3): Free-breathing radial MRI

o Stack-of-radial MRI provides self-navigation to track breathing motion
 We can group the k-space data into different motion states

Motion State 1 ! A\ AAanNAaan LA .End Explfatlon

= MR

Respiratory Position

------------------------------------------- End Insplranon

N Spokes N Spokes

(Figure from: Feng et al., MRM 2016 )



Example (3): Free-breathing radial MRI

XD-GRASP

Motion Average Motion State 1 Motion State4 Motion State 6

(Figure from: Feng et al., MRM 2016 )



Example (3): Free-breathing radial MRI

o XD-GRASP? (Golden-angle radial MRI with reconstruction of extra motion-state dimensions
using compressed sensing)

* Application: free-breathing abdominal imaging

» Constraint. temporal finite differences (or total variation) in dynamic dimension

* |ncoherent measurement:. undersampled golden-angle radial MRI

e Optimization function: min, || FCx -y ” 2‘”1 ” 51X ” 1+’12 ” 32% ” 1

* Reconstruction: non-linear conjugate gradient

[1] Feng et al., Magn Reson Med. 2016;75(2):775-88



Compressed sensing MRI

e Limitations:

* Requiring high computational complexity to solve the nonlinear reconstruction
problem

 Reconstruction result is dependent on the choice of regularization parameters

* Other related constrained reconstruction methods
* Dictionary-based compressed sensing MRI
 MRI reconstruction using low-rank constraints



Take home message

* 3 main components in compressed sensing MRI
 The image has a sparse representation in some transform domain

* The k-space sampling trajectory generates incoherent artifacts in the
sparse transform domain

e |t involves a nonlinear reconstruction method



Take home message

* |f we want apply compressed sensing to accelerate an application, check:
* (1) Can the images be sparsified in a certain (transform) domain?
 Wavelet transform
e Spatial total variation in images
» Jotal variation in temporal frames
 X-f space
* (2) Can the sampling pattern generate incoherent artifacts?
» Variable density sampling pattern
» Radial acquisition
» Spiral acquisition



Thanks!

 Next time
* Deep learning MRI reconstruction

Shu-Fu Shih

sshih@mednet.ucla.edu



