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Review: compressed sensing MRI

* 3 main components in compressed sensing MRI
 The image has a sparse representation in some transform domain

* The k-space sampling trajectory generates incoherent artifacts in the
sparse transform domain

e |t involves a nonlinear reconstruction method
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Deep learning

 Deep learning is subset of machine learning, which is essentially a neural
network with many layers.

 Deep learning network “learns” from a lot of data to perform a variety of tasks
IN computer vision, natural language processing, bioinformatics...

* The success of deep learning since 2010s
* Availablility of large public datasets
» Accessibility of GPUs for parallel computing
» Accessibility of codes and toolboxes for deep neural network training



Deep learning MRI reconstruction

* |t’s iImpossible to cover all aspects of deep learning for MRI reconstruction
because it’'s an active and rapid-changing research field.

e |n this lecture, we will focus on:

* |ntroducing basic components of deep learning networks, especially on
ConvNet

* Providing some insights on why it might work

* Presenting different applications of deep learning in MRI reconstruction



Image reconstruction model

 General image acquisition model: Y — Ax + n
» y: the acquired data in the sensor domain (e.g., k-space in MRI)
e X:the image
* n: additive noise
* A: an operator which is modality dependent
- For computed tomography (CT): A is Radon transform
- For fully sampled Cartesian MRI: A is Fourier transform

- For undersampled Cartesian MRI: A includes subsampling and Fourier
transform

- For non-Cartesian MRI: A is non-uniform Fourier transform



Image reconstruction model

* Jo solve an underdetermined inverse problem (e.g., in the case of undersampled
MRYI), constrained reconstruction methods have been popular

Constrained reconstruction

Image model optimization problem
y=Ax+n argmin, L(x) = F(Ax,y) + Ad(W, x)
| |
Consistency with Regularization term

sensor-domain data encoding prior information



Image reconstruction model

 Deep learning uses information from a large dataset to learn a non-linear
mapping.
* |n the task for MRI reconstruction from undersampled data:

Non-linear neural network
v
Q=% ({’)

Images with reduced artifacts or Images or k-space data from
fully sampled images/k-space data undersampled measurements



Deep learning medical imaging reconstruction

e Different realizations:

Image-domain learning Hybrid-domain learning

Mapping between sensor domain
and image domain

f

(Figures from: Ravishankar et al., Proceedings of the IEEE 2020 )



Convolution Neural Networks (CNN or ConvNet)

 ConvNet is one of the most popular deep learning network for imaging tasks

* We will introduce several key components in ConvNet and show how it can
be trained

- Convolution layer

- Pooling layer

- Activation function
- Loss function

- Optimizer

- Regularization

- Batch normalization



Where 1t all started...

 |LeNet-5': one of the very first ConvNet architectures with back-propagation
for handwritten digit recognition

32x32 6x28x28 6x14x14 16x10x10 16x5x5 120x1x1
S84x1x1

10x1x1

put layer

Full-connected layer
K6
Convolutional layer Subsampling layer Convolutional layer Subsampling layer Convolutional layer
C1 : 6 kernels(5x5) S2 : 2x2 C3 : 16 kernels (5x5) S4 : (2x2) C5: 1920 kernels (5x5)

[1] LeCun et al., Proceedings of the IEEE, 1998
( Figure from: Gu et al., Pattern Recognition, 2018 )



A glimpse of popular ConvNet models

Inception v4
SENet <«——
l ShuffleNet vl
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* Many of these ConvNet were first used in natural images (not medical images) and in a variety of tasks (e.g., classification, segmentation...)

(Figure from: Li et al., IEEE Trans Neural Netw Learn Syst 2022 )



Popular ConvNet: U-Net

* The original U-Net was designed for medical image segmentation.
* |t has been modified and applied in many DL-based MRI reconstruction tasks.

input

mage [ele oo utput e Convolution at different levels

| | segmentation

* Pooling layers

* Contracting and expansive
paths

o Skipped connections

=» cONV 3X3, RelLLU
copy and crop

§ max pool 2x2

4 up-conv 2x2
=» cONvV 1x1

[1] Ronneberger et al., MICCAI, 2015
( Figure from: Ronneberger et al., MICCAI, 2015)



Convolutional layer

* Convolution operation: use a shared kernel to convolve with the entire image
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2

Figures from: https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network



https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network

Convolutional layer

* Motivation of using a convolutional layer
e (1) Sparse interaction

 Each pixel interacts with the kernel instead of all the other pixels.
* (2) Translational invariance

 Some features are shared across the entire image.

* The features do not change if the input is shifted.



Pooling layer

* (Generate a summary of statistics with a reduced number of weights
o Stride: the number of pixel shift for the next pooling operation

Single depth slice

Max pool with 2x2 filters and stride 2




Activation function

* Convolution operation is linear. A stack of convolutional layers only generates
a linear mapping process.

e Activation functions are used to introduce non-linearity to the network.
» RelU (rectified linear unit): f(a) = max(0,a)

( Figures from: Gu et al., Pattern Recognition, 2018 )



Improvements on activation functions

 RelLU has zero gradient when the node is not active

» Different activation functions have been proposed to alleviate the problem

( Figures from: Gu et al., Pattern Recognition, 2018 )



Loss function

 We need an objective criteria to tell the network how well it performs.
 The overall network is trained to minimize the loss function.

* | oss functions for image reconstruction:
e MSE loss /L2 loss
e |1 loss
* SSIM (structural similarity index measure) loss|*
* perceptual loss
 GAN (generative adversarial network) loss

( Figure from: Mustafa et al., WACV, 2022 )



Optimizer

» Algorithms used to update network parameters for loss minimization

e (Gradient descent

o Stochastic gradient descent

* Replace the actual gradient calculation from the entire dataset by using
a randomly selected subset

o “Batch size” can be used to refer to the number of training samples in
one forward/backward pass

Stochastic gradient descent

( Figure from: https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0 )



Optimizer

* Jo avoid local minimum problems, there are more adaptive optimizers that
incorporate a “momentum” idea that use previous gradient information

 Adagrad
« RMSProp
« Adam

o |Luckily, there are many optimizers already implemented in popular deep
learning frameworks (PyTorch, TensorFlow...)

( Figures from: Cheng et al., RSNA, 2021 )



Optimizer
* Find a suitable learning rate

Too low Just right Too high

J("') \ | “

e

™

A small learning rate The optimal learning

requires many updates rate swiftly reaches the
before reaching the minimum point
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent

hehaviars

( Figure from: https://towardsdatascience.com/hyper-parameter-tuning-technigues-in-deep-learning-4dad592c63c8)



https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8

Back-propagation

* Once we know about the gradient, back-propagation is usually used as an
efficient way to update the network’s trainable parameters.



Weight
Bias

Back-propagation o l et |

!
One layer: Q — %(WP + b)

Network with () — Z(P) = p(w,, ... p(W,p(W, P + b)) + b,) ... + b))

deep layers:

‘ First layer ‘

Second layer

Using chain rule O = F(2(P)) 90 _ 07 (P) _ F'(g(x)).g'(x)

To calculate derivatives oP  OP

* | uckily, back-propagation can be done easily using popular deep learning
frameworks (PyTorch, TensorFlow...)



Regularization

* Regularization is any modification we make to a learning algorithm that is
iIntended to reduce its generalization error but not its training error?.

 Examples:
* |nclude prior knowledge
* Apply some constraints on the parameters in the loss function
 Data augmentation: image flipping, rotation...
* Dropout

[1] Goodfellow et al., Deep learning. MIT press, 2016
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 Randomly “turn off” some of the weights during the training process.

(a) Standard Neural Net

A&V

Regularization

* Dropout’

[1] Srivastava et al., JMLR, 2014



Batch normalization

e |nternal covariance shift?

* The distribution of the inputs in each layer changes as learning occurs in
previous layers.

 Batch normalization® normalizes output of the previous layer by subtracting
the batch mean, and then dividing by the batch’s standard deviation (i.e.,
normalizing the previous output)

[1] loffe et al., PMLR, 2015



Data stratification

* A proper data stratification ensures that training and evaluation data is
representative of the distributions in the population.

* Things to consider in MRI applications:
* Subject demographics (sex, age,...)
» Patients/Healthy volunteers
e Different diseases
e Sequence acquisition parameters



vValidation

* Different validation methods
e Train/test split
* Kk-Fold cross validation
| eave-one-out cross validation



vValidation

 k-fold cross validation

(Figure from: https://towardsdatascience.com/validating-your-machine-learning-model-25b4c8643fb7)



https://towardsdatascience.com/validating-your-machine-learning-model-25b4c8643fb7

Hyperparameter tuning

* There are many hyperparameters in deep learning networks
* | earning rate
 Batch size
* Architecture design: number of layers, numbers of channels

Grid Layout Random Layout

 Approaches for hyperparameter tuning
* Grid search

e Random search

Important parameter

https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8



https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8

Hyperparameter tuning

* Monitor validation loss for hyperparameter tuning
» Pay attention to signs of underfitting and overfitting

Optimal

Test data
/

Underfitting | Overfitting

/
Training data
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Model complexity

https://towardsdatascience.com/hyper-parameter-tuning-technigues-in-deep-learning-4dad592c63c8



https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8

Ablation study

* Ablation study investigates the performance of a neural network by removing

one or several components at a time to understand the contribution from

each component to the entire network.

(Figure from: https://www.baeldung.com/cs/mi-ablation-study )


https://www.baeldung.com/cs/ml-ablation-study

Image quality evaluation

* Quantitative image quality metrics
« NRMSE, PSNR, SSIM...

* Radiology scoring
* EXxperienced radiologists review and rate the image quality

o Statistical analysis



Deep learning-based MRI reconstruction

 Now we will show different deep learning-based MRI reconstruction methods
 We will focus on:

 What kind of problem does it want to solve?

 What kind of approach does it propose?




(1) MoDL

 MoDL (Model-based Deep Learning architecture for inverse problem)

* Replace sparsity constraints (in CS formulation) with a deep learning network

9)
Formulate as an . . ” ” 2 ”
e X — aremin UFx — + A Il x — ConvNet(x
optimization problem recon ST Y 2 (x) 2

An unrolled network with two main blocks
(1) A ConvNet to reduce artifacts / improve image quality
(2) A data consistency layer for k-space data consistency

D
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(b) Proposed Model-based Deep Learning (MoDL) architecture

(a) The Residual learning based denoiser |
(Figures from: Aggarwal et al., IEEE TMI 2019 )



Overall MoDL architecture

(1) MoDL

’

' 1" Iteration /" Iteration | K" Iteration
Lo = Ay <() 2

Compressed
Zero-padding sensing MoDL

k-space sampling
pattern

Image
results

Error

(Figures from: Aggarwal et al., IEEE TMI 2019 )



(2) KIKI-net

* KIKI-net!: Use cross-domain ConvNets for image reconstruction
 One sub-network for k-space completion
* One sub-network for image restoration

network ReLU ReLU ReLU ReLU ReLU network

input \ )\ J \ ) output
econstruction
ne

Feature Extraction Inference
net

B Architecture of ICNN

0 Conv Conyv
ReLU ReLU ReLU ReLU ReLU connection network
output

[1] Eo et al., MRM, 2018



(2) KIKI-net

Results from single-domain CNN vs. cross-domain CNN
(undersampled factor R=4)

SD-CNNs CD-CNNs
Full-sampled ‘ \ ‘ \
[III-net KKKK-net IKIK-net KIKI-net

Full-sampled (magnified) Zero Filling

(Figure from: Eo et al., MRM 2018 )



(3) PKT

 PKT? (projection-based k-space transformer):

» Use a transformer network with self-attention mechanism to predict missing
k-space spokes in radial MRI

Undersampled golden-angle Fully-sampled golden-angle
radial k-space radial k-space

PSNR=31.04 = PSNR=35.78 PSNR=36.60
— == 55|M=0.81 SSIM=0.90

[1] Chang et al., MICCAI, 2022



(4) UP-Net

 UP-Net (Uncertainty-aware Physics-driven deep learning network)

* Uncertainty information incorporated into deep learning-based artifact
suppression and parameter mapping

Self-gating and coil combination UP-Net with 2 concatenated modules

3D multi-echo i ' 3D self-gated
stack-of-radial Self-gating NUFFT and multi-echo images ,—l Input self-gated images to UP-Net

k-space data R.ad.al using a 40% beamforming
K, trajectory  acceptance window based '
calibration L . " 2 -
™ using bbb he coil combination P 30 image (echo 2] _ Network and loss functions used only in the training process
' calibration
ks spokes

D Output enhanced images and quantitative maps from UP-Net

Complex Complex
fat signal water signal

2D slice extracltion

||ﬁ - pll
Ltmu:rt = —
u

log(id).

Decoder for
paramelter
mapping /

Single 2D slice Single 2D slice
self-gated enhanced
multi-echo images multi-echo images

Uncertainty maps
Field map
Decoder for ™
uncertainty
estimation
Real/imag components Real/imag components ,
from the 6 echoes from the 6 echoes The output contains a SC"p:’US V'a_'b’f?l'

; Shared encoder nenonnti walise
stacked along channel stacked along channel for non-negative uncertainty values

[1] Shih et al., MRM, 2023



(4) UP-Net

» Additional uncertainty map provided by the deep learning network can be
used to estimate errors in the deep learning results

Reference PDFF maps  PDFF maps output PDFF errors PDFF uncertainty
(FB + CS + GQ) (FB + UP-Net) (UP-Net vs. CS+GC) (FB + UP-Net)

ROI = 12.53% ROI = 12.08%
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(Figure from: Shih et al., MRM 2023 )



(5) Self-supervised physics-guided reconstruction

o Self-supervised physics-guided reconstruction?
* Deep learning reconstruction without fully-sampled reference dataset

* Acquired k-space was split into 2 disjoint sets for self-supervision during
training.

Acquired
k-space locations: Q

‘I | |
Il ‘
| |
' ! '

|
! |
i
i
|

|

Edve Sensitivity Maps Set1:0
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. y
Unrolled Network ?‘ Ml

[1] Yaman et al., MRM, 2020



(5) Self-supervised physics-guided reconstruction

* |mage from self-supervised learning show similar performance compared to
the supervised method.

Fully-Sampled ) Supervised Proposed
Reference raoEhas _ DL- MRI Self-Supervised

©
Q
P
&
-
—
=
N
<
O
O
D
o

Difference
Images(x10)

(Figure from: Yaman et al., MRM 2020 )



(6) Active MRI acquisition

* Active MRI acquisition

* Develop an evaluator network to rate the reconstruction uncertainty and the
quality gain after each k-space line measurement

|t is trained jointly with a reconstruction network.

(3) Network

j system

Initial k-space next (red) Uncertainty Reconst
trajectory trajectory (4) -ruction

[1] Zhang et al., CVPR, 2019



(6) Active MRI acquisition

 The same undersampling pattern may not be suitable for all the cases.

* Deep learning-based uncertainty map was used to decide if sufficient data is
acquired for faithful reconstruction.

Shortcut from .
previous | — Subsampling
| :

For uncertainty estimation:

Reconstruction Af :
network | f : Evaluator

1
| Raterec. ____ Y

Training
objective

(Figures from: Zhang et al., CVPR 2019 )



(7) Joint reconstruction and trajectory optimization

« BJORK™ (B-spline parameterized Joint Optimizations of Reconstruction and K-space trajectory)

* Use deep learning to find a suitable k-space trajectory for undersampled

MRI reconstruction

Training:

Reference images

Evaluation:

Forward NUFFT

Quadratic roughness
penalized least-squares
reconstruction

A good initialization

Simulated k-space

Learned w'

Acquired with learned

trajectories
raw data

Update CNN denoiser (with parameters @) and sampling pattern @

N iterations

CNN Denoiser Data
) consistency

Unrolled reconstruction network

N iterations

CNN Denoiser Data
0" consistency

Unrolled reconstruction network,
tuned in the training phase

Reference

Similarity losses

[1] Wang et al., IEEE TMI, 2022



Radial MRI and
learned trajectory

CS Recon

CS reconstruction

UNN Recon

DL reconstruction

Radial
fully-sampled

Radial-under SPARKLING

(Figures from: Wang et al., IEEE TMI 2022 )



Deep learning MRI reconstruction

* Deep learning neural networks are tailored for specific applications to solve
specific problems.

 Many of the methods involve k-space data at some point. It can softly
constrain the reconstruction results to be consistent with the acquired

undersampled k-space data.

 Some applications requires multi-tasking (e.g., reconstruction + uncertainty
estimation)
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averaged images

Publicly available datasets for MRI reconstruc

 Public datasets with k-space data available . @ @)
e fastMRI (https://qgithub.com/facebookresearch/fastMRI ) — ) | &

 Knee, brain and prostate MRI

e SKM-TEA (https://github.com/StanfordMIMI/skm-tea ) s

* Quantitative knee MRI with tissue segmentation

e M4Raw (https://qgithub.com/mylyu/M4Raw )
 Multi-contrast multi-repetition 0.3T brain MRl

e ... and more

Welcome to the fastMRI Dataset

\ NYU Langone
e Heaith

Apply for Access
The apclicalicn proce

licn gprocess ncludss sccepiarce of the Dala Sharing Sgresenert. Tound

Multi-Coil K-space
(Raw Data)

~—» Reconstruction (Upstream)
~=# Analysis (Downstream)

Undersampling Mask

(Figures from: https://fastmri.med.nyu.edu/, Desai et al., arxiv 2022, https://qgithub.com/mylyu/M4Raw )



https://github.com/facebookresearch/fastMRI
https://github.com/StanfordMIMI/skm-tea
https://github.com/mylyu/M4Raw
https://fastmri.med.nyu.edu/
https://github.com/mylyu/M4Raw

Discussion

* All major MRI vendors are working on deep learning-based MRI
reconstruction

* [here are many opportunities, but there are also many open questions.
 What are the limitations for deep learning-based MRI reconstruction?

e |et’s ask ChatGPT...

. What are the limitations for deep learning-based MRI reconstruction?



Discussion

* Limitations of deep learning-based MRI reconstruction
* |nsufficient training data

* Even though there are public large datasets, obtaining diverse and representative
dataset is still challenging.

* Lack of interpretability / “Failure mode” not clear

* The black-box nature of deep learning can be problematic for clinical acceptance
and trust.

* Uncertainty quantification or theory to explain deep learning are being investigated
* (Generalization to different acquisition parameters

* Potential solution would be including large datasets with all different acquisition
parameters or including sequence parameters as inputs

 Computational complexity
* The hardware keeps advancing and it can still be expensive



A few personal suggestions...

* Focus on the problem you want to solve (to improve image quality? to allow for higher
undersampling factors? to train without ground truth images?.. )

 Have a good understanding on the deep learning tools you have. Choose or
develop methods or architectures that can solve the problem.

* Understand your data and be aware of the MRI signhal model and acquisition
process. There can be constraints or there can be some prior information to
utilize.

 Don’t get lost in numbers! Don’t forget the clinical problem.



Thanks!

 Next time:
 Managing Motion in MRI by Dr. Wu

Shu-Fu Shih

sshih@mednet.ucla.edu



