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Class Business

e (Office hours

= Instructors: Fri 10-12pm
TAs: Xinran Zhong and Zhaohuan Zhang (time:
TBD)

- Emails beforehand would be helpful

e Homework 1 will be out on 4/12 (due on 4/26)

e Papers and Slides




Today’s Topics

Recap of adiabatic pulses
Small tip approximation
Excitation k-space interpretation
Design of 2D excitation pulses

- Spiral pulse design

Recap of Adiabatic Pulses

- A special class of RF pulses that can
achieve uniform flip angle

- Flip angle is independent of the applied B1
field

T
97&/0 Bi(T)dr

- Slice profile of an adiabatic pulse is obtained
using Bloch simulations

= Does not follow the small tip approximation




Adiabatic Pulses @ Non-adiabatic Pulses
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Amplitude and frequency Amplitude modulation

modulation _
Short duration (0.3-1 ms)

Long duration (8-12 ms) _
Low B1 amplitude

High B1 amplitude (>12 pT)

Generally NOT multi- Generally multi-purpose
purpose (inversion pulses (inversion pulses can be
cannot be used for used for refocusing, etc.)
refocusing, etc.)

Adiabatic Pulses

® Frequency modulated pulses:
By (t) = A(t)e 10!

—
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Adiabatic Inversion

Adiabatic Excitation:
BIR Pulses

= BIR: B1 Insensitive Rotation
= Most popular: BIR-4 Pulse




Adiabatic Excitation: BIR4 Pulse

Bloch Simulator

- http://mrsrl.st rd.edu/~brian/blochsim/
[mx,my,mz] bloch(bl,gr,tp,tl,t2,df,dp,mode, mx,my,mz)

Bloch simulation of rotations due to Bl, gradient and
off-resonance, including relaxation effects. At each time
point, the rotation matrix and decay matrix are calculated.
Simulation can simulate the steady-state if the sequence
is applied repeatedly, or the magnetization starting at m0.

INPUT:
bl (Mx1) RF pulse in G. Can be complex.
gr (Mx1,2,0or 3) 1,2 or 3-dimensional gradient in G/cm.
tp (Mx1) time duration of each bl and gr point, in seconds,
or 1x1 time step if constant for all points
or monotonically INCREASING endtime of each
interval..
tl Tl relaxation time in seconds.
t2 T2 relaxation time in seconds.
df (Nx1) Array of off-resonance freguencies (Hz)
dp (Px1,2,0r 3) Array of spatial positions (cm).
Width should match width of gr.
mode= Bitmask mode:
Bit 0: O0-Simulate from start or MO, 1-Steady State
Bit 1: 1-Record m at time points. O0-just end time.




$%% User inputs:

mu = 5; % Phase modulation parameter [dimensionless]
betal = 672; % Frequency modulation parameter [rad/s]
pulseWidth = 10.24; % RF pulse duration [ms]

A0 = 0.12; % Peak Bl amplitude [Gauss].

TS

nSamples = 512; % number of samples in the RF pulse

dt = pulseWidth/nSamples/1000; % time step, [seconds]

tim_sech = linspace(-pulseWidth/2,pulseWidth/2,nSamples)./1000"';
% time scale to calculate the RF waveforms in seconds.

$ Amplitude modulation function Bl(t):
Bl = A0.* sech(betal.*tim_sech);

$ Carrier frequency modulation function w(t):
w = -mu.*betal.*tanh(betal.*tim sech)./(2*pi);
$ The 2*PI scaling factor at the end converts the unit from rad/s to Hz

% Phase modulation function phi(t):
phi = mu .* log(sech(betal.*tim_sech));

% Put together complex RF pulse waveform:
rf pulse = Bl .* exp(li.*phi);

% Generate a time scale for the Bloch simulation:
tim _bloch = [0:(nSamples-1)]*dt;

%% The Bloch simulator requires a gradient input. For our simulation,
% gradient will be zero, as we are simulating a non-selective RF pulse.
Tl_value = 10000; % [ms]

T2_value = 10000; % [ms]

f_max = 4000; % off-resonance frequency range [Hz]
freg_range = linspace(-f_max,f_max,1000); % off-resonance frequency range [Hz]

grad_pulse = zeros(1,length(rf_pulse));
mod = 0;
[mx1,myl,mz1] = bloch(rf_pulse, grad_pulse, dt, ...
T1l_value/1000, T2_value/1000, freg_range, ©, mod, ©, ©, 0);

% Plotting the longitudinal magnetization to see the inversion profile as a
% function of resonance frequency

figure(2);

plot(freq_range, mzl, 'k','LineWidth',LineWidthVal);

title('Inversion Profile'); xlabel('Frequency (Hz)'); ylabel('M_z'); grid on;
v = axis; axis([v(1) v(2) -1.05 1.05]);



Small Tip Approximation

Bloch Equation (at on-resonance)

erot — =
— rot X Be
i t X VDeff

B Bi (1)
where B.;; = 0
B ‘:; + G,z

When we simplify the cross product,

w(z)




Small Tip Approximation

it _
dt —on (1)

M. =~ My small tip-angle approximation

sin® =06
cos 0 = 1 } dMZ_

M, = My — constant

dt

dM,,
dt

= —iyG,zMyy, + iyB;(t)M, Myy = My + iM,

First order linear differential equation. Easily solved.

dM
d:y = —iyG,zMyy, + iyB, (t)M,

Solving a first order linear differential equation:
t
M, (t,z) = iyM, f B,(s)e ¥Gzz(t=s)gg
0

. —tw(z)T T
M, (1,2) = iMye (2)7/2 - FT1ip{w1(t + 5)} ‘f:_(y/gﬁ)(;zz

(See the note for complete derivation)




To the board ...

Small Tip Approximation

Fourier

transform
M

AV VA
- For small tip angles, “the slice or frequency profile is
well approximated by the Fourier transform of B1(t)”

- The approximation works surprisingly well even for
flip angles up to 90°




Shaped Pulses
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Position

Pauly, J. J. Magn. Reson. 81 43-56 (1989)

small-angle approximation still works reasonably
well for flip angles that aren’t necessarily “small”

Multi-Dimensional Excitation RF Pulses

1D vs. N-D RF pulses

Small tip angle approximation revisited
Excitation k-space interpretation

1D examples in excitation k-space
Excitation k-space integrals

2D excitation pulse design steps

2D spiral pulse design example

EPI pulse design, spectral-spatial pulses
(next lecture)




What is Multi-Dimensional Excitation?

Multi-dimensional excitation occurs when using
multi-dimensional RF pulses in MRI/NMR, i.e.

2D or 3D RF pulses

1D vs. N-D RF Pulses
RF ~L\~ ’

j Selective
along z
] only
Y

2D/N-D Pulse Design
Requires:

- Specific B1 waveform
- Specific gradient
waveforms

l Selective

/ :,,,;;jiii:f':: ‘ along z

Y

Selective
alongy

= 1D pulses are selective along 1 dimension, typically the

slice select dimension

= 2D pulses are selective along 2 dimensions
» S0, a 2D pulse would select a long cylinder instead of a slice
» The shape of the cross section depends on the 2D RF pulse




Excitation k-space
Interpretation

Small Tip Approximation




Small Tip Approximation

t =~ —
Moy (6,7) =iy | Ba(s)e= 142 € g,
0

Let us define: s 1) = ——/ G(r

\ 4

t " —
May(67) = My | Ba(e)e 007
0

One-Dimensional Example

th 1o t3 t4 15 t5 t7

Consider the value of k ats =t4, 15, ... t7




One-Dimensional Example

® This gives magnetization at t = to, the end of
the pulse

® [ ooks like you scan across k-space, then
return to origin

Evolution of Magnetization
During Pulse

RF pulse goes in at DC (kz = 0)

Gradients move previously applied
weighting around

Think of the RF as “writing” an analog
waveform in k-space

Same idea applies to reception




Other 1D Examples




Other 1D Examples

Multiple Excitations

® Most acquisition methods require several
repetitions to make an image

- e.g., 128 phase encodes
e Data is combined to reconstruct an image

e Same idea works for excitation!




Simple 1D Example
- s
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Sum the data from two acquisitions

Same profile as slice selective pulse, but zero echo time

Small Tip Approximation
Solution as k-space Integral

t T~ —
My (t,7) = ivMo / Bi ()R 7
0

oi2mR(s,t) 7 = / 35(k(s, t) — k)e2™ Tk
k

Substituting and changing the order of integration:

¢ 7o -
M, (t,7) = iM / [ / vB1(s)*5(k(s,t) — k)ds|e*™ " dk
k

p(k)




t PR
Mg, (t,7) = iMj [ [ / vB1(s)*0(k(s,t) — k)ds|e*™ " dk
k —00

My, (t,7) = i My / p(K)e 2™ 7 dk
k

t

where  p(¥) = / By (s)35(R(s, ) — F)ds

— 0

® The magnetization is the inverse transform of
p(k)

e \We want this to be a unit delta, multiplied by a
weighting function

Small Tip Approximation
Solution as k-space Integral

Multiply and divide by |k’(s,t)|:

p(R) = / YBU) 3575 8) — B[/ (s, ) ds

—oo [K'(8,2)]
W(k(s,1)

Unit Delta

If we assume W(K) is single-valued

s,t) — k)|k'(s,t)|ds




Small Tip Approximation
Solution as k-space Integral

Mg, (t,7) = iMy / p(k)e2 7 gk

-

k

p(k) = W (k)S(k)
k-space weighting
35(k(s,t) — k)|k'(s,t)|ds

k-space sampling

Small Tip Approximation
Solution as k-space Integral

M, (t,7) = iMy / W (k)S(k)e2™ " dk
k

So, the inverse Fourier transform of the k-space
weighting will give us the excitation profile!

_ Bi(s)

W) = 1o (s, )

k-space weighting




Design of 2D Excitation Pulses

2D Pulse Design

1. Choose a k-space trajectory

— "Y ¢ —
(s t) = — L / G(r)dr
2. Choose a weighting function
W (k)

3. Design the RF pulse




1. Choose a k-space trajectory

® Select a k-space trajectory that
uniformly covers k-space

- k-space extent (—Kyax, Kmax) = Spatial

resolution

- sampling density (Ak) = spatial FOV

1. Choose a k-space trajectory

® Two most common choices:

e Spiral is common for pencil beams

e EPIl is common for spectral-spatial pulses




2. Choose a weighting function

M, (t,7) = iMy / W (k)S(k)e2™* 7k
k

e An excitation profile is the inverse Fourier
transform of the weighting function

e |f you know what excitation profile you want, its
Fourier transform will be the weighting function

e [ ocalized excitation = low-pass k-space
weighting

2. Choose a weighting function

K-space weighting Excitation profile

‘ )
i

{
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3. Design the RF pulse

B, needs to be
scaled for flip angle

2D Spiral Pulse Design

e Two major choices: 1

- Resolution Ar Ar = 2kmax

e Smallest volume / minimum transition
width

- Field-of-View (FOV)
e Distance to center of first sidelobe

1 2N
FOV = X% = 2%




ky
k-Space 1=
Trajector
J Yy Ak — 2kmax
& 2N
kmax
yd
ky
_kmax
N Turn
Spiral
Impulse
Response

FOV =2NAr

A =
" 2o

2D Spiral Pulse Design

e Spiral Gradient Design
- Constant angular rate spiral

- Constant slew rate spiral




Constant Angular Rate Spiral k




2D Spiral Pulse Design

e Truncated Jinc Weighting

[ k. )
2kma:c

W (k) = jine(N ) - rect(

kmaa:

Minimum transition width,
but residual ripples

2D Spiral Pulse Design

e \\Vindowed Jinc Weighting

k, 2N

Window Funct/on

W (k) = jine(N

Doubled transition width,
but smoother response




2D Spiral Pulse Design

e Calculation of the RF pulse
- given W(k) and k(s,t)

o yBi(s)
Wk = 1o,

Bi(s) = o |G(s) W (F)

- needs to be scaled for flip angle

- |k'(s,t)| is an estimate of the density
compensation function d(t)

i
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Conclusions

- N-D RF pulses are selective in N-dimensions

- The small tip approximation can be extended to
describe the excitation k-space

- The small tip approximation solution can be used
to show that the excitation profile of an N-D pulse
is given by the inverse Fourier transform of the
excitation k-space weighting

Conclusions

- An N-D RF pulse can be designed by:
* Choosing a k-space trajectory
* Choosing a k-space weighting function

e Then calculating the B4(t) and G(t) functions




Next Class

® N-D pulses with EPI trajectory
e Spatial-spectral pulses

e Matlab demo of N-D pulses

Thank Youl!

- Further reading
* Read “Spatial-Spectral Pulses” p.153-163
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