Fast Imaging Trajectories: EPI and PROPELLER

M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.01

Class Business

- Homework 2 due 5/4 Fri by 5 pm
 - PDF and MATLAB scripts
 - TA office hours
- Project Proposal
 - template on website
 - 1 page, due 5/11 Fri by 5 pm

Outline

• EPI1

- Pulse sequence and design considerations
- Alternatives
- Artifacts and corrections

• PROPELLER²

Applications

Gradient Echo

- Utilization of transverse magnetization
 - With $T_s = 8 \mu s$ and $N_x = 128$, $T_{acq} = 1.024 \text{ ms}$
 - <2% of T_2^* in brain at 3 $T!^1$
- Scan time
 - $T_{GRE} = N_{pe} \times TR$
 - TR = 10 ms, N_{pe} = 256: T_{GRE} = 2.56 sec

TR

Multi-echo Gradient Echo

Gradient-Echo EPI

Design Basics

- What species are you imaging?
 - T₂, T₂*?
 - Utilize transverse magnetization efficiently by sampling up to, e.g., 2 × T₂* (100 ms) → Readout gradient duration in EPI
 - Total readout durations of up to 100 ms

Readout Gradient Design

$$(\gamma/2\pi)\cdot G_{read}\cdot T_s = \Delta k_x \le 1/FOV_x$$

$$G_{read} \le G_{max}$$
 $SR \le S_{max}$

$$T_{read} = T_s \cdot N_x$$
 $T_{ramp} = G_{read}/SR$

$$ESP \ge T_{read} + 2 \cdot T_{ramp}$$

Readout Gradient Design Example:

$$(\gamma/2\pi)\cdot G_{read}\cdot T_s = 1/FOV_x$$

ESP = $(T_s\cdot N_x) + 2\cdot (G_{read}/SR)$

$$T_s = 8 \mu s$$
; $N_x = 128$;
 $FOV_x = 22 \text{ cm}$; $SR = 120 \text{ T/m/s}$
 $G_{read} = 13.3 \text{ mT/m}$
 $ESP = 1.246 \text{ ms}$

If
$$T_s = 8 \mu s$$
 and $SR = 20 T/m/s$
 $ESP = 2.354 ms$

If
$$T_s = 4 \mu s$$
 and $SR = 20 T/m/s$
 $ESP = 3.172 ms$

If
$$T_s = 4 \mu s$$

ESP = 0.955 ms

Phase Encoding Bandwidth

PEbw = 1/ESP ~ 1 kHz; more off-resonance artifacts cf. RObw up to 500 kHz ($T_s = 2 \mu s$)

- ETL can be 4-64 or higher
 - Limited by T₂* decay, off-resonance effects
 - aka "EPI factor"
- ESP typically ~1 ms
 - Must accommodate gradients and ADC
 - Short ESP facilitates high ETL
- Example: readout until S = 0.2 S₀
 - $S = S_0 * exp(-t/T_2*)$; assume $T_2* = 60$ ms
 - t = 96.6 ms
 - ESP = 1 ms; ETL = 96

Minimizing Readout Duration / ESP

- Higher gradient amplitudes and slew rates
- Higher readout bandwidths
- Sampling along the ramps
- Partial k-space acquisition
 - in x: "partial Fourier" < 1
 - in y: phase FOV can be < 1
- Parallel imaging
- Inner volume imaging

Gradient-Echo EPI

Spin-Echo EPI

Comparison

- GRE-EPI More signal dropouts, distortion
- GRE-EPI: More susceptibility effects, better for functional MRI acquisition

Managing EPI distortion

SE-EPI

???

Multi-shot EPI

- Single-shot EPI (ssEPI)
 - minimal motion artifacts
 - low resolution
 - geometric distortion and signal loss
- Multi-shot EPI (msEPI)
 - aka interleaved or segmented EPI
 - higher resolution
 - less distortion & signal loss (improve PEbw)
 - motion and phase inconsistencies

Multi-shot EPI

Echo Time Shifting:

Comparison

ssEPI

msEPI

Multi-shot EPI

Interleaved

Readout Segmented

(a)	(b)

EPI Scan Time

Scan time

- Recall $T_{GRE} = N_{pe} \times TR_{GRE}$
- $N_{shot} = N_{pe} / ETL$
- $T_{EPI} = N_{shot} x TR_{EPI} = (T_{GRE} / ETL) x (TR_{EPI} / TR_{GRE})$

• Example 1

- $N_{pe} = 256$; ETL = 16; $N_{shot} = 16$
- TR = 30 ms: T_{EPI} = 480 ms

Example 2

- $N_{pe} = 64$; ETL = 64; $N_{shot} = 1$
- TR = 100 ms: $T_{EPI} = 100 \text{ ms}$

Fly-Back GRE-EPI

Fly-Back GRE-EPI

- "Fly-back" gradients
 - No data sampling
 - Use max gradient amplitude/slew rate
- Advantages
 - All readouts in the same direction, minimal artifacts
- Disadvantages
 - Longer ESP than bipolar EPI

Related Sequences

- 3D echo-volume imaging (EVI)
- Hybrid EPI + non-Cartesian (e.g., PROPELLER, EPI in a circular plane)
- Multi-echo chemical shift imaging
- Echo-planar spectroscopic imaging (EPSI), 2D and 3D

EPI Artifacts

- Nyquist ghosting artifacts
- Chemical-shift artifacts, e.g., fat
- Signal drop-out
- Geometric distortion

EPI Ghosting Artifacts

'Orthogonal' Plane

'Oblique' Plane

EPI Ghosting Artifacts

- Inconsistencies between even/odd echoes due to:
 - Spatially independent (constant):
 B₀ eddy currents, off-center freq mismatch
 - Linear and oblique phase errors:
 k-space shifts from gradient / timing errors
 - Higher order eddy current effects
 - Concomitant magnetic fields

EPI Chemical Shift Artifacts

- Along readout
 - $\Delta x_{cs} = \Delta f_{cs} \cdot (FOV_x / RObw)$
 - At 1.5 T, $\Delta f_{WF} \sim 210$ Hz for FOVx = 32 cm and RObw = 250 kHz, $\Delta x_{cs} = 0.027$ cm
- Along phase encode
 - $\Delta y_{cs} = \Delta f_{cs} \cdot (FOV_y / ROpe)$, ROpe = N_{shot} / ESP
 - for ESP = 1 ms, Δy_{cs} = 6.72 cm

EPI Considerations

- Minimize ESP (covered earlier)
- Spatial-spectral excitation for fat signal suppression
- Reconstruction steps
 - Row flipping and phase correction
 - Ramp sampling correction
 - Fourier transformation
 - (Possible) B₀ inhomogeneity correction
 - (Possible) Gradient trajectory corrections

EPI Considerations

Axial EPI, before & after trajectory correction

EPI Considerations

Image distortion and signal loss from dentures

w/ dentures

Bernstein et al., Handbook of MRI Pulse Sequences, Ch 16.1

Summary

- Strengths
 - very fast
- Challenges
 - T₂* decay
 - high demand on slew rate
 - artifacts

Clinical Applications

- BOLD fMRI
- ASL
- DWI (see figure)
- Real-time MRI
- MRSI
- and more ...

<u>PROPELLER</u>

- Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction¹, aka BLADE
- Radial and Cartesian hybrid
- Oversampling at the center of k-space
 - correct inconsistencies between strips
 - reject data with through-plane motion
 - weigh strip contributions w.r.t. motion
 - average to decrease motion artifacts

PROPELLER

Trajectory Design:

N strips, successively rotated by $d\alpha = \pi/N$

L lines per strip, M points per line

For an $M \times M$ image, need $L \cdot N = M \cdot (\pi/2)$ central oversampled circle of diameter L

Scan time trade-offs based on L and N

Asymmetric FOV also possible

Trajectory Design Example:

24-cm FOV; 0.5 mm in-plan resln; L = 28

M = FOV/resln = 480

 k_x $N = (M/L) \cdot (\pi/2) \sim 27$

 $TR = 4000 \text{ ms}, T_{scan} = N \cdot TR = 1 \text{ min } 48 \text{ s}$

Trajectory Design:

Motion correction:

Rotation in image space ←→ rotation in k-space Compare k-space magnitude between strips

Translation in image space ←→ linear phase in k-space Compare k-space phase between strips

Other motion in image space ←→ k-space mag/phase Compare and weigh importance of strips

Reconstruction:

Pipe, MRM 1999; 42: 963-969

T2 FSE BLADE

T2 FSE

Lavdas E, et al., MRI 2012; 30: 1099-1110

- Advantages
 - robust to motion
- Disadvantages
 - increased scan time
- Extensions
 - 3D blocks; 3D rods (TORQ)

Clinical Applications

- Brain
- Abdomen/Pelvis
- MSK
- Diffusion-weighted imaging (high-resolution)

Summary

- EPI
 - very popular for fast MRI!
 - design, recon, corr drives a lot of research
- PROPELLER
 - very robust to motion
 - philosophy can be adapted to other seq
- Next time: Non-Cartesian sampling

Thanks!

- Further reading
 - Bernstein et al., Handbook of MRI Sequences
 - pubmed.org
- Acknowledgments
 - Novena Rangwala

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab