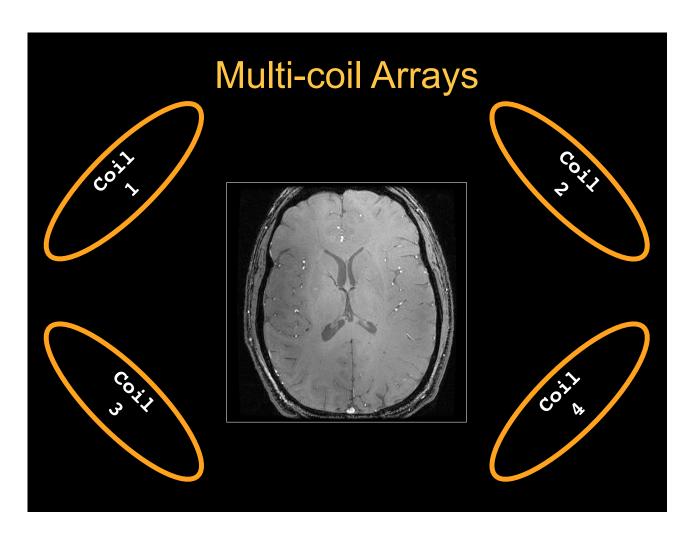
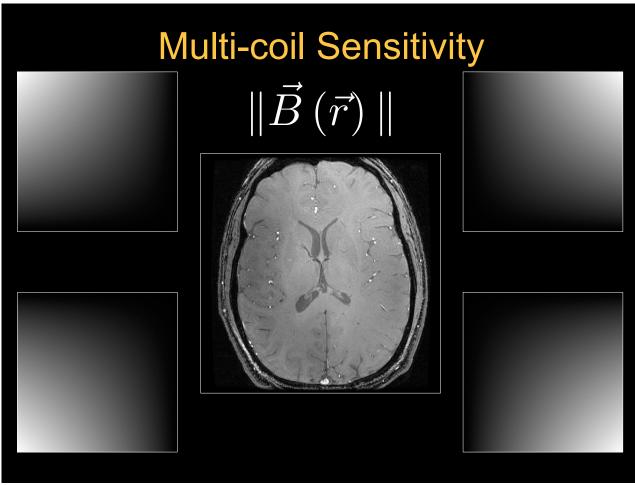
Image Reconstruction Parallel Imaging I

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.05.22

Today's Topics

- Multicoil reconstruction
- Parallel imaging
 - Image domain methods:
 - SENSE
 - k-space domain methods:
 - SMASH
 - GRAPPA (next time)





Multi-coil Reconstruction

Each coil has a complete image of whole
 FOV and an amplitude and phase sensitivity

$$C_l(\vec{x})$$
 $l = 1, 2, ... L$

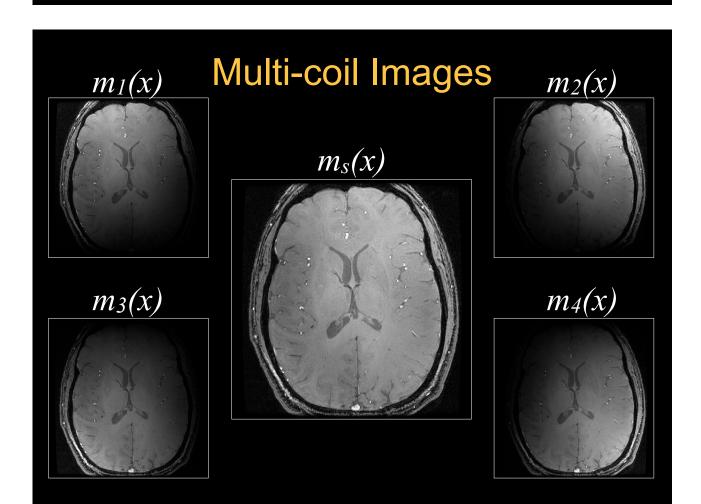
Coils are coupled, so noise is correlated

$$E[n_i n_j] = \Psi$$

Received data from coil I:

$$m_l(\vec{x}) = C_l(\vec{x})m(\vec{x}) + n_l(\vec{x})$$

• Given $m_l(x)$, how do we reconstruct m(x)?



Multi-coil Reconstruction

For a particular voxel x

$$\begin{pmatrix} m_1(\vec{x}) \\ m_2(\vec{x}) \\ \vdots \\ m_L(\vec{x}) \end{pmatrix} = \begin{pmatrix} C_1(\vec{x}) \\ C_2(\vec{x}) \\ \vdots \\ C_L(\vec{x}) \end{pmatrix} m(\vec{x}) + \begin{pmatrix} n_1(\vec{x}) \\ n_2(\vec{x}) \\ \vdots \\ n_L(\vec{x}) \end{pmatrix}$$

$$C_L(\vec{x}) \qquad OR$$

$$m_s(\vec{x}) = Cm(\vec{x}) + n$$

$$L \times 1 \quad L \times 1 \quad L \times 1$$

Minimum Variance Estimate

$$\hat{m}(\vec{x}) = (C^* \Psi^{-1} C)^{-1} C^* \Psi^{-1} \underline{m}_s(\vec{x})$$
1 x 1 1 x L L x 1

Covariance (variance)

$$COV(\hat{m}(\vec{x})) = C^* \Psi^{-1} C$$

What if Ψ is σ^2 I?

$$\hat{m}(\vec{x}) = (C^*C)^{-1}C^*m_s(\vec{x})$$

Intensity Phase Correction

Approximate Solution

• Often we don't know $C_l(x)$, but

$$m_l(\vec{x}) = C_l(\vec{x})m(\vec{x})$$

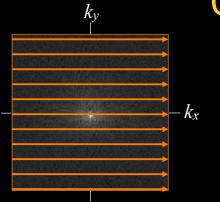
Approximate solution:

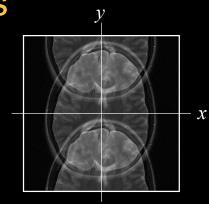
$$\hat{m}_{SS}(\vec{x}) = \sqrt{\sum_{l} m_l^*(\vec{x}) m_l(\vec{x})}$$

• For SNR > 20, within 10% of optimal solution

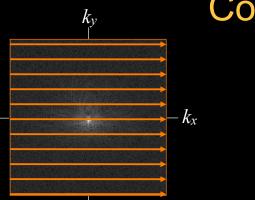
PB Roemer et al. MRM 1990

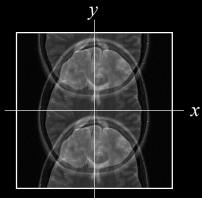
Accelerate Imaging with Array k_v Coils _v





Accelerate Imaging with Array Coils v





- Parallel Imaging
 - Coil elements provide some localization
 - Undersample in k-space, producing aliasing
 - Sort out in reconstruction

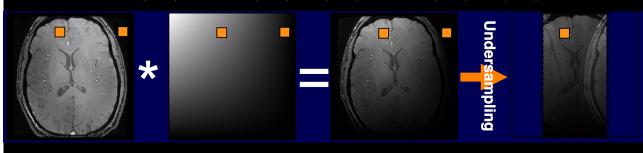
Parallel Imaging

- Many approaches:
 - Image domain SENSE
 - k-space domain SMASH, GRAPPA
 - Hybrid ARC
- We will focus on two:
 - SENSE: optimal if you know coil sensitivities
 - GRAPPA: autocalibrating / robust

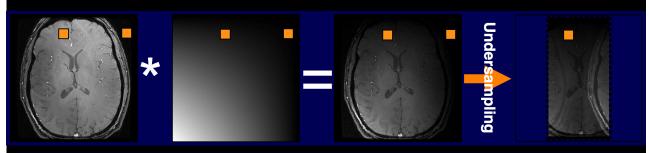
Parallel Imaging (SENSE)

Cartesian SENSE

$$m_1(\vec{x_1}) = C_1(\vec{x_1})m(\vec{x_1}) + C_1(\vec{x_2})m(\vec{x_2})$$



$$m_2(\vec{x_1}) = C_2(\vec{x_1})m(\vec{x_1}) + C_2(\vec{x_2})m(\vec{x_2})$$



$$\begin{pmatrix} m_1(\vec{x_1}) \\ m_2(\vec{x_1}) \\ \vdots \\ m_L(\vec{x_1}) \end{pmatrix} = \begin{pmatrix} C_1(\vec{x_1}) & C_1(\vec{x_2}) \\ C_2(\vec{x_1}) & C_2(\vec{x_2}) \\ \vdots \\ C_L(\vec{x_1}) & C_L(\vec{x_2}) \end{pmatrix} \begin{pmatrix} m(\vec{x_1}) \\ m(\vec{x_2}) \end{pmatrix} + \begin{pmatrix} n_1(\vec{x_1}) \\ n_2(\vec{x_1}) \\ \vdots \\ n_L(\vec{x_1}) \end{pmatrix}$$
Aliased Sensitivity at Source Voxels

OR

$$\hat{m}(\vec{x}) = (C^* \Psi^{-1} C)^{-1} C^* \Psi^{-1} m_s(\vec{x})$$
 2 x 2 2 x L L x 1

2 x 1

Lx2 Lx1

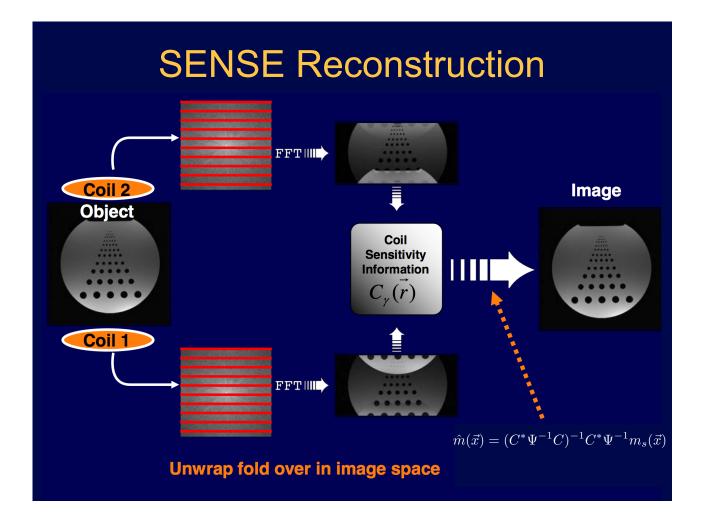
 $\overline{m}_s = Cm + n$

L x 1

L aliased reconstruction resolves 2 image pixels

For an N x N image, we solve (N/2 x N) 2 x 2 inverse systems

For an acceleration factor R, we solve (N/R x N) R x R inverse systems



SNR Cost

- How large can R be?
- Two SNR loss mechanisms
 - Reduced scan time
 - Condition of the SENSE decomposition
- SNR Loss

$$SNR_{SENSE} = \frac{SNR}{g\sqrt{R}}$$

Geometry Reduced
Factor Scan Time

Geometry Factor

 Covariance for a fully sampled image (variance of one voxel):

$$\chi_F = \frac{1}{n_F} (C_F^* \Psi^{-1} C_F)^{-1}$$

Covariance for a reduced encoded image:

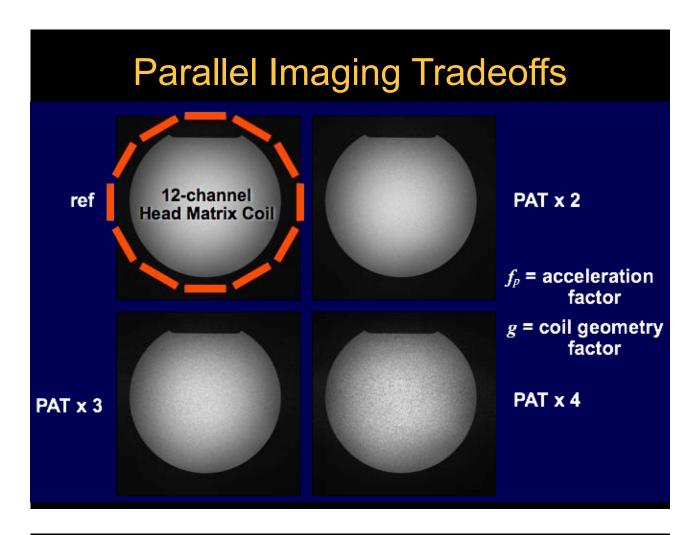
$$\chi_R = \frac{1}{n_R} (C_R^* \Psi^{-1} C_R)^{-1}$$

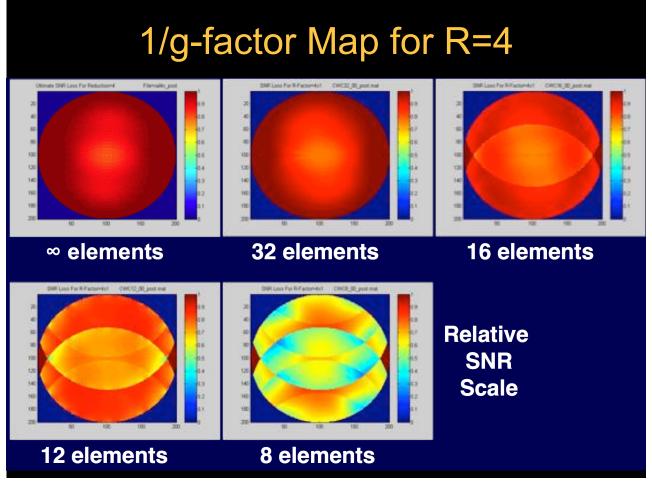
To the board ...

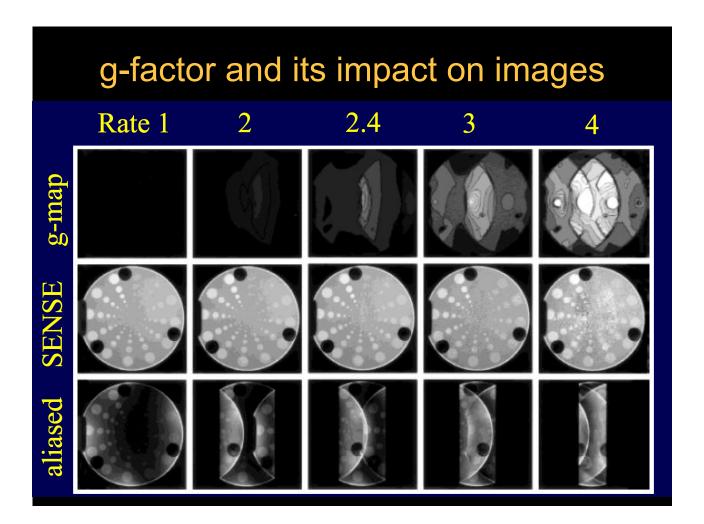
Geometry Factor

- g-factor is critical since it depends on:
 - Acceleration
 - Spatial position
 - Aliasing direction
 - Coil geometry
- Minimizing g-factor drives system design
- Sense coils are different from traditional array coils

To the board ...

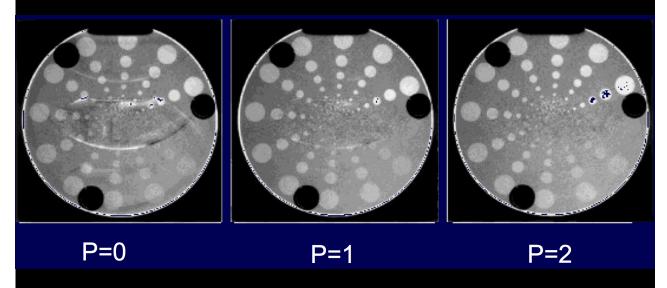






Dependence on Coil Sensitivity

 Images reconstructed using coil sensitivity maps with different order P of polynomial fitting



Parallel Imaging (SMASH)

SMASH

Simultaneous Acquisition of Spatial
 Harmonics (SMASH) uses linear
 combinations of acquired k-space data from multiple coils to generate multiple data sets
 with offsets in k-space

Phase Encoding by Amplitude Modulation

Signal Equation:

$$S(k_x, k_y) = \int \int C(x, y) \rho(x, y) e^{-ik_x x - ik_y y} dx dy$$

$$\rho(x,y) = \text{spin density}$$

$$C(x,y)$$
 = receiver coil sensitivity

Phase Encoding by Amplitude Modulation

$$S(k_x, k_y) = \int \int C(x, y) \rho(x, y) e^{-ik_x x - ik_y y} dx dy$$

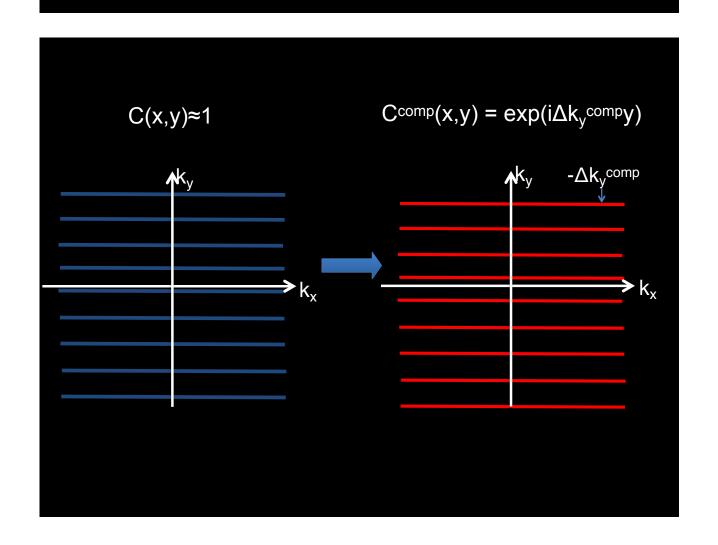
- If C(x,y) ≈ 1 (relatively homogeneous coil sensitivity), S(k_x,k_y) = FT{ρ(x,y)}
- But coils often do not have uniform sensitivity, and usually there is a fall-off of sensitivity with distance from the coil

Phase Encoding by Amplitude Modulation

- Use the arrangement of coils to construct sinusoidal sensitivity profiles
 - Sensitivity profiles are combination of multiple coils, whose signals are combined to produce the desired sinusoidal sensitivity

$$C^{comp}(y) = \cos(\Delta k_y^{comp} y) + i \sin(\Delta k_y^{comp} y)$$
$$= e^{i\Delta k_y^{comp} y}$$

The wavelength could be $\lambda = 2\pi/\Delta k_y = FOV$



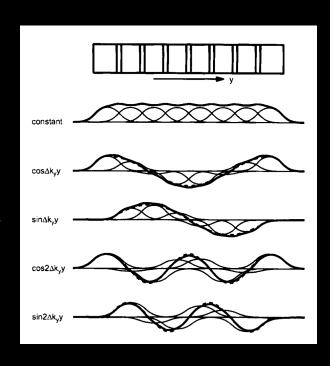
Spatial Harmonic Generation Using Coil Arrays

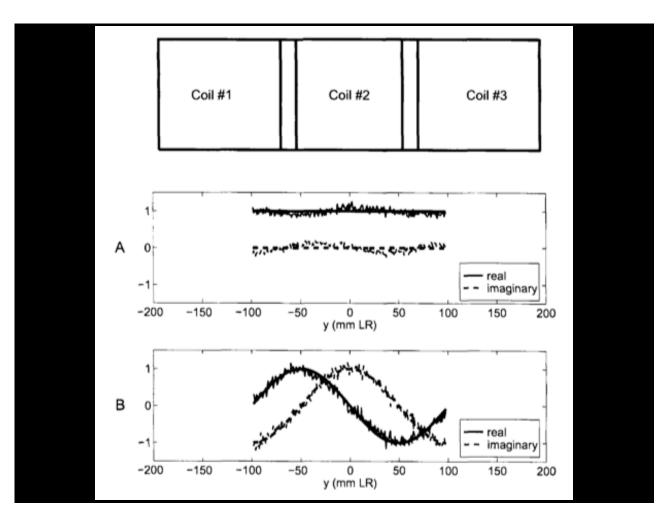
$$C_m^{comp}(y) = \sum_j a_{j,m} C_j(y) = e^{-i2\pi m\Delta k_y y}$$

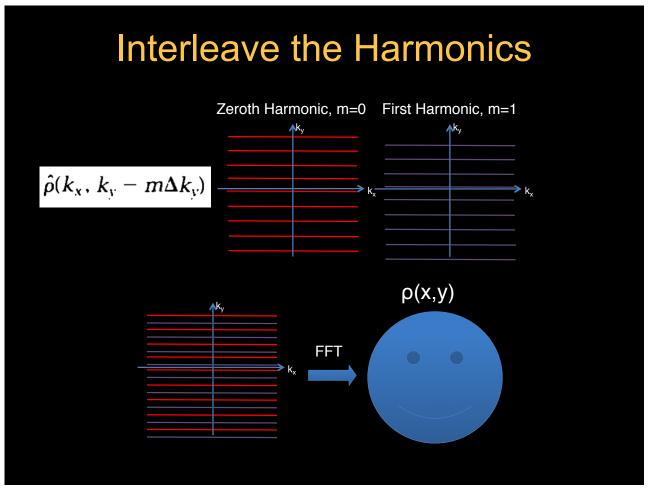
- Linear surface coil array sensitivities C_j are combined with linear weights, a_{j,m}, to produce composite sinusoidal sensitivity
- Composite sensitivities are arranged to be spatial harmonics
- m is an integer, chosen to be a desired harmonic

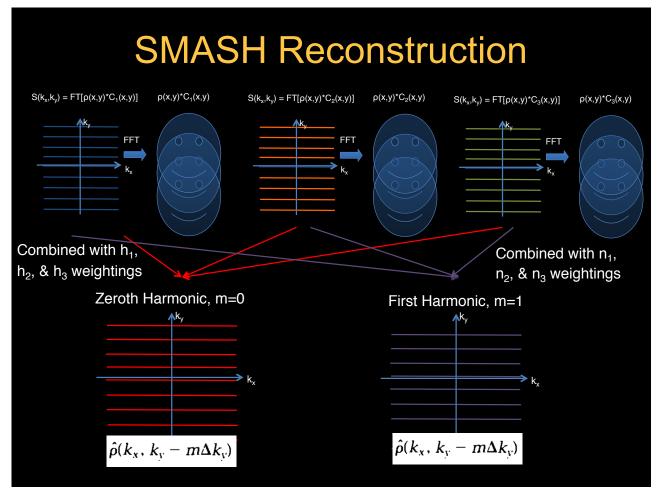
Theory: Spatial Harmonics

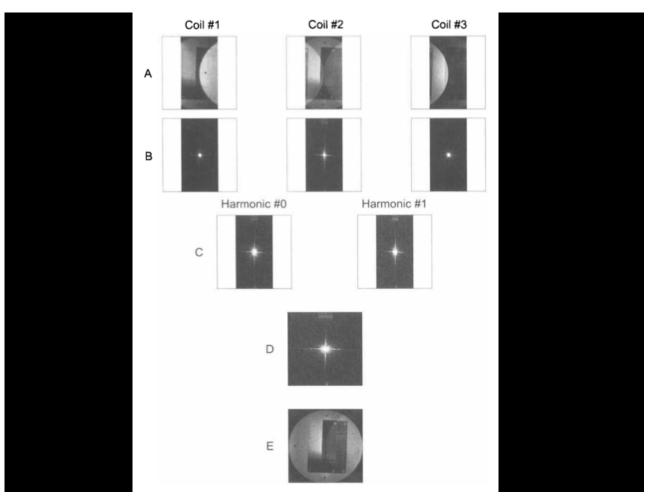
- 8 coil array
- Gaussian coil sensitivity distribution used
- m = 0, 1, -1, 2, -2
- Each spatial harmonic generated is shifted by -mΔk_v





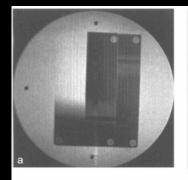


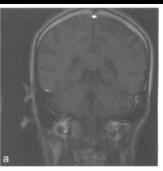


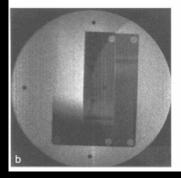


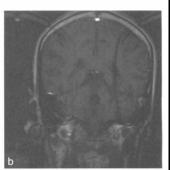
Three-Element Array

Reference images









Four-Element Array

Reference images

SMASH images

Key Points of SMASH

- k-space lines are synthesized by combining signals from multiple coils such that it creates a partial replacement for a phase encoding gradient
- Decreases acquisition time by 1/N
 - N is the number of generated spatial Harmonics

$$\sum_{j} a_{j,m} C_j(y) = e^{-i2\pi\Delta k_y y}$$

Sodickson et al. MRM 1997

Summary

- Parallel imaging utilizes coil sensitivities to increase the speed of MRI
- Cases for parallel imaging
 - Higher patient throughput,
 - Real-time imaging/Interventional imaging
 - Motion suppression
- Cases against parallel imaging
 - SNR starving applications

Further Reading

- Multi-coil Reconstruction
 - http://onlinelibrary.wiley.com/doi/10.1002/mrm.
 1910160203/abstract
- SENSE
 - http://www.ncbi.nlm.nih.gov/pubmed/10542355
- SMASH
 - http://www.ncbi.nlm.nih.gov/pubmed/9324327
- Parallel Imaging Overview
 - http://www.ncbi.nlm.nih.gov/pubmed/17374908

Thanks!

Kyung Sung, PhD ksung@mednet.ucla.edu http://kyungs.bol.ucla.edu