Image Reconstruction Parallel Imaging / Coil Compression / k-t Sampling

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.05.24

Class Business

- Final project abstract / presentation
- Office hours
 - Instructors: Fri 10-12 noon
 - email beforehand would be helpful

Today's Topics

- Parallel Imaging
 - SMASH review
 - Auto-SMASH
 - GRAPPA
- Coil compression
- k-t BLAST / k-t SENSE

SMASH Review

• The linear combination of coil sensitivities looks like sinusoids:

$$e^{-i2\pi(m\Delta k_y)y} = \sum_{j=0}^{L-1} a_{j,m}C_j(y)$$

• Once we have $a_{j,m}$,

$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y}e^{-2\pi (m\Delta k_y)y}dy$$
$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y}\sum_{j=0}^{L-1}a_{j,m}C_j(y)dy$$

SMASH Review

$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y} \sum_{j=0}^{L-1} a_{j,m} C_j(y)dy$$
$$\hat{m}(k_y + m\Delta k_y) = \sum_{j=0}^{L-1} a_{j,m} \int_y C_j(y)m(y)e^{-i2\pi k_y y}dy$$
$$\hat{m}(k_y + m\Delta k_y) = \sum_{j=0}^{L-1} a_{j,m} \int_y C_j(y)m(y)e^{-i2\pi k_y y}dy$$

$$\hat{m}(k_y + m\Delta k_y) = \sum_{j=0} a_{j,m} m_j(k_y)$$

Auto-SMASH

• Estimate *a_{j,m}* directly

 $\hat{m}(k_y + m\Delta k_y) = \sum_{j=0}^{L-1} a_{j,m} m_j(k_y)$ synthesis

• Solve for $a_{j,m}$ from calibration data & synthesize the missing data with $a_{j,m}$

Parallel Imaging (GRAPPA)

GRAPPA

- Coil sensitivities are
 - local in image space
 - extended in k-space

 $m(\vec{x})C_j(\vec{x})$

GRAPPA

 Missing information is implicitly contained by adjacent data

GRAPPA Reconstruction

How do we find missing data from these samples?

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot \underline{m}_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$

missing data for each coil

neighborhood data for each coil

Auto-Calibration

- Assume there is a fully sampled region
- We have samples of what the GRAPPA synthesis equations should produce

Invert this to solve for GRAPPA weights

Auto-Calibration

- Calibration area has to be larger than the GRAPPA kernel
- Each shift of kernel gives another equation

Here, 3x3 kernel, 5x5 calibration area gives 9 equations

Auto-Calibration

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$

• Write as a matrix equation

GRAPPA Coefficients

Data Data

• GRAPPA weights are:

 $a_k = (M_A^* M_A + \lambda I)^{-1} M_A^* M_{k,c}$

GRAPPA - Synthesis

Auto-Calibration Parallel Imaging

GRAPPA

- Compute GRAPPA weights from calibration region
- Compute missing k-space data using the GRAPPA weights
- Reconstruct individual coil images
- Combine coil images

Considerations of GRAPPA

- Calibration region size
- GRAPPA kernel size
- Sample geometry dependence

Coil Compression

Make a matrix of vectorized sensitivity maps

 The matrix C*C shows the correlation between channels

Eigen Coils

- Compute the eigen decomposition of C*C
 C*C = BDB*
 - B is a unitarty matrix of eigenvectors

$$D = \begin{pmatrix} \lambda_1 & & 0 \\ & \lambda_2 & & \\ & & \cdot & \\ 0 & & \lambda_L \end{pmatrix}$$

- Diagonal matrix of eigenvalues

- $B^*C^*CB = D$ C'
- C' = CB
 - λ_i tells you how much energy is in each eigen coil channel
 - These eigen coils drop off rapidly, telling how many independent channel you have

MATLAB Demo

load brain_mcoil.mat

[nx, ny, nc] = size(im);

C = reshape(im,nx*ny,nc);

[B, D] = eig(C'*C);

 $C_hat = C*B;$

C_hat = reshape(C_hat,nx,ny,nc);

Coil Compression

- Use the eigen coil basis to reduce the size of your parallel imaging reconstruction
- M is a matrix of the vectorized aliased data, compute

M' = MB

- the data rotated into the eigen coil space
- only keep the colums of M' that have significant eigen coils
- Reconstruct using eigen coils C'

k-t Acceleration

Background

Information redundancy

"loss-less" compression

Principles

🛊 FT in time

x-f space

Principles

• Spare representation in x-f space

k-t sampling pattern for R=4

Fully-sampled

P20

 ρ_1

 ρ_4

.....

 ρ_3

PSF in x-f space

k-t BLAST

- Exploit the reduced signal overlap in x-f space produced by interleaved k-t sampling
- Reconstruction: unfold the x-f representation

What about if we have a estimation of signal magnitudes in the x-f domain?

Tsao J et al. MRM 50: 1031-1042. 2003

Method: k-t BLAST

Method: k-t BLAST

Thanks!

• Next time

- Compressed Sensing

Kyung Sung, PhD ksung@mednet.ucla.edu <u>http://kyungs.bol.ucla.edu</u>