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Class Business

• Office hours 

- Holden: by appointment

- Wenqi (HW1): 10-12 on 4/18 Fri

- Timo (HW2): 4/18, 4/24, 4/25   

- Email beforehand 


• Homework 1 due on 4/21 Mon 


• Homework 2 due on 4/28 Mon   


• Final project

- Start thinking



Outline

• Review of adiabatic pulses


• Small tip approximation


• Excitation k-space interpretation


• 2D EPI pulse design


• MATLAB demo


• Homework 2



Review of Adiabatic Pulses



▪ Amplitude and frequency 
modulation


▪ Long duration (8-12 ms)


▪ High B1 amplitude (>12 µT)

▪ Amplitude modulation with 
constant carrier frequency 


▪ Short duration (0.3-1 ms)


▪ Low B1 amplitude

▪ Flip Angle  ≠ !"#(%)'%
(

	
)

▪ Flip Angle  = !"#(%)'%
(

	
)

Adiabatic Pulses Non-adiabatic Pulses

▪ Generally multi-purpose 
(inversion pulses can be 
used for refocusing, etc.)

▪ Generally NOT multi-
purpose (inversion pulses 
cannot be used for 
refocusing, etc.)
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Adiabatic Inversion
A(t)

t

ω1(t)

t

AFP

ω0



Amplitude Modulation, A(t) Frequency Modulation, ω1(t)

Pulse Parameters:

A0 = 12 µT

µ = 5

β = 672 rad/s

Duration = 10.24 ms

Hyperbolic Secant Pulse Example



Original Pulse (100%)

B1max = 12 µT

Hyperbolic Secant: Adiabatic Property

60% Attenuated Pulse

B1max = 7.2 µT

B1 Threshold ≈ 6 µT



Small Tip Approximation



Bloch Equation (at on-resonance)

d ~Mrot

dt
= ~Mrot ⇥ � ~Beff

where
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When we simplify the cross product,



Small Tip Approximation
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Mz ⇡ M0 small tip-angle approximation

sin θ ≈ θ

cos θ ≈ 1

Mz ≈ M0 → constant

 

 
 

First order linear differential equation. Easily solved.



 

Mr(⌧, z) = iM0e
�i!(z)⌧/2 · FT 1D{!1(t+

⌧

2
)} |f=�(�/2⇡)Gzz

Solving a first order linear differential equation:
 

(See the references for complete derivation.)



Mr(τ, z) = iM0e−iω(z)τ/2 ⋅ FT1D{ω1(t +
τ
2

)} |f=−(γ/2π)Gzz

RF
0

B1

τ t Simple RF pulse:  B1(t) = B1 ⋅ ⊓ (
t − τ

2

τ
)

ω1(t +
τ
2

) = γ ⋅ B1 ⋅ ⊓ (
t
τ

)

FT1D{ ⊓ (
t
τ

)} = τ ⋅ sinc(τ ⋅ f ) = τ ⋅ sinc(τ ⋅
γ

2π
Gz ⋅ z)

⇒ Mxy(z) = iM0e−iω(z)⋅τ/2 ⋅ ω1 ⋅ τ ⋅ sinc(τ ⋅
γ

2π
Gz ⋅ z)

Note:  is at the end of the RF pulse 

       Extra phase can be rephased using a Gz gradient  

τ

Mxy(z) ∝ sinc(τ ⋅
γ

2π
Gz ⋅ z)



Mr(τ, z) = iM0e−iω(z)τ/2 ⋅ FT1D{ω1(t +
τ
2

)} |f=−(γ/2π)Gzz

RF
0

B1

τ t Simple RF pulse:  B1(t) = B1 ⋅ ⊓ (
t − τ

2

τ
)

Mxy(z) ∝ sinc(τ ⋅
γ

2π
Gz ⋅ z)

What if we want to excite a rectangular slice?



Small Tip Approximation

- For small tip angles, “the slice or frequency profile is 
well approximated by the Fourier transform of B1(t)”


- The approximation works surprisingly well even for 
flip angles up to 90°

Fourier 
transform



Excitation k-space 
Interpretation



Small Tip Approximation



Small Tip Approximation

Let us define:



Gz(t)

B1(t)

k(s,t)

t7

T

t1 t2 t3 t4 t5 t6

One-Dimensional Example

Consider the value of k at s = t1, t2, … t7



Gz(t)

B1(t)

k(s,t)

t7

T

t1 t2 t3 t4 t5 t6

One-Dimensional Example

End of pulse is t = t7

At s = t7
⃗k(s) = −

γ
2π ∫

t7

t7

⃗G(τ)dτ = 0



Gz(t)

B1(t)

k(s,t)

t7

T

t1 t2 t3 t4 t5 t6

One-Dimensional Example

End of pulse is t = t7

At s = t7, ⃗k(s) = 0
At s = t6, ⃗k(s) = + Δ
At s = t5, ⃗k(s) = + 2Δ
At s = t4, ⃗k(s) = + Δ
At s = t3, ⃗k(s) = 0
At s = t2, ⃗k(s) = − Δ
At s = t1, ⃗k(s) = − 2Δ



Gz(t)

B1(t)

k(s,t)

t7

T

t1 t2 t3 t4 t5 t6

One-Dimensional Example



Gz(t)

B1(t)

k(s,t)

t7

T

t1 t2 t3 t4 t5 t6

One-Dimensional Example

B1(s)



One-Dimensional Example

Excitation k-space Excited slice profile

B1



One-Dimensional Example

• This gives magnetization at t = t0, the end of 
the pulse


• Looks like you scan across k-space, then 
return to origin



Evolution of Magnetization 
During Pulse

• RF pulse goes in at DC (kz = 0)


• Gradients move previously applied 
weighting around


• Think of the RF as “writing” an analog 
waveform in k-space


• The effect of rephasing gradients 


• Same idea applies to reception



Other 1D Examples

Gz(t)

B1(t)

k(t,t0)
t0



Other 1D Examples

Gz(t)

B1(t)

k(t,t0)
t0



Other 1D Examples



Other 1D Examples

Gz(t)

B1(t)

k(t,t0)
t0



Multiple Excitations

• Most acquisition methods require several 
repetitions to make an image

- e.g., 128 phase encodes


• Data is combined to reconstruct an image


• Same idea works for excitation!


- Build up the excitation profile by 
traversing excitation k-space and 
depositing RF energy



Simple 1D Example

Sum the data from two acquisitions


Same profile as slice selective pulse, but zero echo time



What is Multi-Dimensional Excitation?

Multi-dimensional excitation occurs when using 
multi-dimensional RF pulses in MRI/NMR, i.e. 
2D or 3D RF pulses



1D vs. N-D RF Pulses

▪ 1D pulses are selective along 1 dimension, typically the 
slice select dimension


▪ 2D pulses are selective along 2 dimensions

• So, a 2D pulse would select a long cylinder instead of a slice

• The shape of the cross section depends on the 2D RF pulse

z

Selective 
along z 
only

x

y

z

x

y

Selective 
along z

Selective 
along y

2D/N-D Pulse Design 
Requires:

- Specific B1 waveform

- Specific gradient 
waveforms



2D EPI Pulse Design



- Ideally, an EPI trajectory scans a 2D raster in k-
space 

Resolution? / FOV?

Designing EPI k-space 
Trajectory



Designing EPI k-space 
Trajectory

- Resolution:  


- FOV = 1/∆ky 


- Ghost FOV = FOV/2


• Eddy currents & delays produce this



- Refocusing gradients

• Returns to origin at the end of pulse

• (Consider trajectory in excitation k-space) 

Designing EPI k-space 
Trajectory



Designing EPI Gradients

- Designing readout lobes and blips

• Flat-top only design


• RF only played during flat part (simpler)



Designing EPI Gradients: Gx

Gmax

τ
t

τR

τ = 1ms τR = 1/4ms

2kx,max =
γ

2π
(τ − 2τR) ⋅ Gmax

= 4.257[kHz /G] ⋅
1
2

[ms] ⋅ 4[G/cm]

= 8.514[cycles/cm]

Δx =
TBW

2kx.max

TBW = 1 : Δx =
1

8.514[cycles/cm]
≈ 0.12[cm]



Designing EPI Gradients: Gx

Gmax

τ
t

τR

τ = 1ms τR = 1/4ms

2kx,max =
γ

2π
(τ − 2τR) ⋅ Gmax

= 4.257[kHz /G] ⋅
1
2

[ms] ⋅ 4[G/cm]

= 8.514[cycles/cm]

Δx =
TBW

2kx.max

TBW = 4 : Δx ≈ 0.47[cm] (More typical)



Designing EPI Gradients: Gy

Gmax

t

τR

τR = 1/4ms

Δky =
γ

2π
⋅

1
2

⋅ 2τR ⋅ Gmax

= 4.257[kHz /G] ⋅
1
4

[ms] ⋅ 4[G/cm] = 4.257[cycles/cm]

Assume L = 11 (k-space lines)

2ky,max = (L − 1) ⋅ Δky = 42[cycles/cm]

Δy =
TBW = 1

2ky,max
= 0.024[cm] FOV =

1
Δky

= 0.23[cm]



Designing EPI Gradients

- Easy to get k-space coverage in ky


- Hard to get k-space coverage in kx


- We can get more k-space coverage by


• making blips narrower


• playing RF during part of ramps



Blipped EPI

- Rectilinear scan of k-space


- Most efficient EPI trajectory


- Common choice for spatial pulses


- Sensitive to eddy currents and gradient delays



Blipped EPI

Gx,Gy

kx

ky

Gradient Waveforms

k-Space Trajectory
2kx,max

2ky,max



Continuous EPI

- Non-uniform k-space coverage


- Need to oversample to avoid side lobes


• Less efficient than blipped


- Sensitive to eddy currents and gradient delays


• Only choice for spectral-spatial pulses



Continuous EPI

Gx,Gy

kx

ky

Gradient Waveforms

k-Space Trajectory
2kx,max

2ky,max



Flyback EPI

- Can be blipped or continuous


- Less efficient since retraces not used (depends 
on gradient system)


- Almost completely immune to eddy currents and 
gradient delays



Flyback EPI

Gx,Gy

kx

ky

Gradient Waveforms

k-Space Trajectory
2kx,max

2ky,max

Retrace



Designing 2D EPI Spatial 
Pulses

- Two major options

• General approach, same as 2D spiral pulses

• Separable, product design (easier)


- General approach

• Choose EPI k-space trajectory

• Design gradient waveforms

• Design W(k), k-space weighting

• Design B1(t)



Separable, Product Design

- Assume,


	 AS(ky): weighting in the slow, blipped direction

	 AF(kx): weighting in the fast oscillating direction


- Each impulse corresponds to a pulse in the fast 
direction, AF(kx) 



Separable, Product Design







MATLAB Demo



Bloch Simulator

- Code from Dr. Brian Hargreaves



Windowed Sinc RF Pulse



RF Pulse Scaling



RF Pulse Scaling



Bloch Simulation



Bloch Simulation



- Further reading

• Read “Spatial-Spectral Pulses” p.153-163


- Acknowledgments

• John Pauly’s EE469B (RF Pulse Design for MRI)

• Shams Rashid

• Kyung Sung

Thank You!
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