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Part 1: General deep learning concepts



MRI reconstruction tasks

e Scan acceleration and obtaining high quality images are two main reasons why
new MRI reconstruction methods are being developed.

* Different MRI reconstruction tasks:
* (1) Reconstruction from undersampled data

* o recover images from sub-Nyquist sampled measurements (e.g., from
uniform undersampling, variable density undersampling, k-t undersampling)

e (2) Image enhancement

* Jo reduce noise in the Images or improve image sharpness
e (3) Image super-resolution

* [o Increase image resolutions
e (4) Artifacts reduction

* Jo reduce specific types of artifacts from hardware imperfections, MRI physics
or physiological constraints (e.g., EPI artifacts, motion artifacts)



MRI reconstruction tasks

* Conventionally, these reconstruction tasks are carried out with a “hand-
crafted” model (either by observations, experiments or assumptions)

 Example 1:

* Observe redundancy in multi-coil data -> Construct a model to for the
under-determined inverse problem -> Develop parallel imaging
reconstruction algorithms

 Example 2;

 Make assumptions on the underlying noise model in the MRI images ->
Construct a signal model that includes the noise term -> Develop
algorithms to suppress the noise



MRI reconstruction models

* MRl image acquisition model: 'y — FSx + N
» y: the acquired data in the sensor domain (e.g., k-space in MRI)
e X:the underlying image
* n: additive noise
e S: coll sensitivity information
* F: Fourier operator
- For fully sampled Cartesian MRI: A is Fourier transform

- For undersampled Cartesian MRI: A includes subsampling and Fourier
transform

- For non-Cartesian MRI: A is non-uniform Fourier transform



MRI reconstruction models

* Jo solve an under-determined inverse problem (e.g., in the case of
undersampled MRI), constrained reconstruction methods have been popular

Constrained reconstruction
Image model optimization problem

y=UFSx+n  argmin, |UFSx—y| +4 | wxll,

Consistency with Regularization term that
k-space data integrates prior information



Move beyond model-based reconstructions

* Although being very successful, model-based MRI image reconstruction can
have certain limitations:

e (1) Computational efficiency (for iterative methods): Constrained
reconstruction (e.g., compressed sensing) methods usually involve iterative
processing

e (2) Limited representation power: Hand-crafted regularization terms may
not be suitable in certain applications

* (3) No data-driven priors: Some types of information such as anatomical
structure and variability is challenging to capture using explicit models.



Deep learning (DL)

 Deep learning is a branch of machine learning that relies on artificial neural
networks composed of multiple interconnected layers, enabling the system to
automatically learn and represent intricate patterns and relationships within

large and complex datasets.
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Deep learning (DL)

* Deep learning is a branch of machine learning that relies on artificial neural
networks composed of multiple interconnected layers, enabling the system to
automatically learn and represent intricate patterns and relationships within
large and complex datasets.

* Factors that led to the success of deep learning since 2010s
* (1) Advances in high-performance computational power, especially GPUs

(2) Availability of large public datasets for training
(3) Improved network architecture designs and training strategies
(4)

4) Accessiblility of code and toolboxes for training deep neural networks



How DL can help MRI reconstruction?

* |nstead of using an explicit image reconstruction model, we may use deep
learning to learn a non-linear mapping to transform low-quality images (e.g.,
images from sub-Nyquist measurements or images with artifacts) to high-
quality images through training with a large dataset.

Non-linear neural network
v
Q=% (f)

Images with reduced artifacts or Images or k-space data from
fully sampled images/k-space data undersampled measurements




DL MRI reconstruction

* |t’s iImpossible to cover all aspects of deep learning-based MRI reconstruction
because it’'s an active and rapid-changing research field.

* There are a lot of online resources and UCLA lectures on deep learning. We
will only briefly introduce the classic convolutional neural networks.

e |n this lecture, we will focus on:

o Special considerations of MRI reconstruction compared to other computer
vision tasks

 Popular approaches for deep learning MRI reconstruction
* Challenges of deep learning MRI reconstruction



Part 2: Introduction to classic
convolutional neural networks



Convolution Neural Networks (ConvNet)

 ConvNet is one of the most popular deep learning networks for imaging tasks

* We will introduce several key components in ConvNet and show how
ConvNet can be trained

- Convolution layer

- Pooling layer

- Activation function
- Loss function

- Optimizer

- Regularization

- Batch normalization



Where 1t all started...

 |LeNet-5': one of the very first ConvNet architectures with back-propagation
for handwritten digit recognition

32x32 6x28x28 6x14x14 16x10x10 16x5x5 120x1x1
S84x1x1

10x1x1

put layer

Full-connected layer
K6
Convolutional layer Subsampling layer Convolutional layer Subsampling layer Convolutional layer
C1 : 6 kernels(5x5) S2 : 2x2 C3 : 16 kernels (5x5) S4 : (2x2) C5: 1920 kernels (5x5)

[1] LeCun et al., Proceedings of the IEEE, 1998
( Figure from: Gu et al., Pattern Recognition, 2018 )



A glimpse of popular ConvNet models

Inception v4
SENet <«——
l ShuffleNet vl

DenseNet «——

GooglLeNet
(Inception) v1 SqueezeNet ResNeXt
NIN

Inception v2 v3 Xception ShuffleNet v2
AlexNet ZFNet VGGNets ResNet DCGAN MobileNet vl MobileNet v2 MobileNet v3 GhostNet

201 2014 2015 201 2020
013 0 015 016 Classic CNN

structures

* Many of these ConvNet were first used in natural images (not medical images) and in a variety of tasks (e.g., classification, segmentation...)

(Figure from: Li et al., IEEE Trans Neural Netw Learn Syst 2022 )



Popular ConvNet: U-Net

* The original U-Net was designed for medical image segmentation.
* |t has been modified and applied in many DL-based MRI reconstruction tasks.

.| output e Convolution at different levels

| | segmentation

* Pooling layers

* Contracting and expansive
paths

o Skipped connections

=» conv 3x3, RelLU
copy and crop

¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

[1] Ronneberger et al., MICCAI, 2015
( Figure from: Ronneberger et al., MICCAI, 2015)



Convolutional layer

Convolution operation: use a shared kernel to convolve with the entire image

2
2
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2
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2
2

Figures from: https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network



https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network

Convolutional layer

* Motivation of using convolutional layers
e (1) Sparse interaction
 Each pixel interacts with the kernel instead of all the other pixels.
e (2) Translational invariance
 Some features are shared across the entire image.
* The features do not change if the input is shifted.



Pooling layer

* (Generate a summary of statistics with a reduced number of weights
o Stride: the number of pixel shift for the next pooling operation

Single depth slice




Activation function

* Convolution operation is linear. A stack of convolutional layers only generates
a linear mapping process.

» Activation functions are used to introduce non-linearity to the network.

* A popular activation function:
» RelU (rectified linear unit): f(a) = max(0,a)

( Figures from: Gu et al., Pattern Recognition, 2018 )




Improvements on activation functions

 RelLU has zero gradient when the node is not active
» Different activation functions have been proposed to alleviate the problem

|
'
|
i jk = AZijk/ |
|
|
Qi jk = AkZijk !
|

(b) LReLU/PReLU

( Figures from: Gu et al., Pattern Recognition, 2018 )



Loss function

 We need an objective criteria to tell the network how well it performs.
 The overall network is trained to minimize the loss function.

* | oss functions for image reconstruction:
e MSE loss /L2 loss
» SSIM (structural similarity index measure) loss ; A
e perceptual loss ' |
 GAN (generative adversarial network) loss

( Figure from: Mustafa et al., WACV, 2022 )



Optimizer

» Algorithms used to update network parameters for loss minimization

e (Gradient descent

o Stochastic gradient descent

* Replace the actual gradient calculation from the entire dataset by using
a randomly selected subset

o “Batch size” can be used to refer to the number of training samples in
one forward/backward pass

Stochastic gradient descent

( Figure from: https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0 )



Optimizer

* Jo avoid local minimum problems, there are more adaptive optimizers that
incorporate a “momentum” idea that use previous gradient information

 Adagrad
« RMSProp
« Adam

o |Luckily, there are many optimizers already implemented in popular deep
learning frameworks (PyTorch, TensorFlow...)

( Figures from: Cheng et al., RSNA, 2021 )



Optimizer
* Find a suitable learning rate

Too low Just right Too high
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Too large of a learning rate
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( Figure from: https://towardsdatascience.com/hyper-parameter-tuning-technigues-in-deep-learning-4dad592c63c8)



https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8

Back-propagation

* Once we know about the gradient, back-propagation is usually used as an
efficient way to update the network’s trainable parameters.



Back-propagation

_ Bias
Nonlinear Input
function image l

|
One layer: Q — %(WP + b)

Network with () — F(P) = h(w, ... p(w,p(w, P + b)) + b,) ...+ b,)

deep layers:

‘ First layer ‘

Second layer

00 OF(P)

Using chain rule _ > = = — g :
To calculate derivatives Q i J{(g (P)) OP ) (8(x)) - &)

» |Luckily, back-propagation can be done easily using popular deep learning
frameworks (PyTorch, TensorFlow...)



Regularization

* Regularization is any modification we make to a learning algorithm that is
iIntended to reduce its generalization error but not its training error?.

 Examples:
* |nclude prior knowledge
* Apply some constraints on the parameters in the loss function
 Data augmentation: image flipping, rotation...
* Dropout

[1] Goodfellow et al., Deep learning. MIT press, 2016
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 Randomly “turn off” some of the weights during the training process.

Regularization

* Dropout?

[1] Srivastava et al., JMLR, 2014



Batch normalization

e |nternal covariance shift?

* The distribution of the inputs in each layer changes as learning occurs in
previous layers.

 Batch normalization® normalizes output of the previous layer by subtracting
the batch mean, and then dividing by the batch’s standard deviation (i.e.,
normalizing the previous output)

[1] loffe et al., PMLR, 2015



Data stratification

* A proper data stratification ensures that training and evaluation data is
representative of the distributions in the population.

* Things to consider in MRI applications:
* Subject demographics (sex, age,...)
» Patients/Healthy volunteers
e Different diseases
e Sequence acquisition parameters



vValidation

* Different validation methods
e Train/test split
* Kk-Fold cross validation
| eave-one-out cross validation



vValidation

 k-fold cross validation

(Figure from: https://towardsdatascience.com/validating-your-machine-learning-model-25b4c8643fb7)



https://towardsdatascience.com/validating-your-machine-learning-model-25b4c8643fb7

Hyperparameter tuning

* There are many hyperparameters in deep learning networks
* | earning rate
 Batch size
* Architecture design: number of layers, numbers of channels

Grid Layout Random Layout

 Approaches for hyperparameter tuning
* Grid search

e Random search
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Hyperparameter tuning

* Monitor validation loss for hyperparameter tuning
* Pay attention to signs of underfitting and overfitting

Optimal

Test data
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https://towardsdatascience.com/hyper-parameter-tuning-technigues-in-deep-learning-4dad592c63c8



https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8

Ablation study

* Ablation study investigates the performance of a neural network by removing

one or several components at a time to understand the contribution from

each component to the entire network.

(Figure from: https://www.baeldung.com/cs/mi-ablation-study )


https://www.baeldung.com/cs/ml-ablation-study

Image quality evaluation

* Quantitative image quality metrics

« NRMSE, PSNR, SSIM...
* (For medical imaging applications) Radiology scoring

* EXxperienced radiologists review and rate the image quality
o Statistical analysis



Part 3: Considerations for applying
deep learning in MRI reconstructions



Considerations for MRI DL reconstruction

* Distinct differences between MRI recon versus other computer vision tasks:

e (1) Data acquisition: MRI data acquired in the k-space domain, not in the
Image domain, and are inherently complex-valued.

e (2) MRI physics: There is MRI physics behind the formation of the images.

* (3) Availability of multi-contrast images: There can be multiple contrasts
(e.g., different colls, different T1/T2 weightings) in the MRI dataset.

* (4) Clinical workflow compatibility: Developing DL applications in MRI needs
to consider whether it can be compatible with the clinical workflow.

» | et’'s see how MRI researchers apply deep learning with considerations of
MRI data characteristics...



Different training schemes

e Different approaches:

Image-domain learning Hybrid-domain learning

i
il

Mapping between k-space domain
and image domain

i "'l"ﬂ‘ y Wb~ it
[ XK il
P o5 — [ o

(Figures from: Ravishankar et al., Proceedings of the IEEE 2020 )



Different training schemes

* Image-domain training was popular in the early development of deep learning MRI
reconstruction

* |mages are easier to access compared to raw k-space data

 Popular network designs and training strategies in computer vision tasks are
developed based on images, not k-space data

* |t can be more prone to image hallucinations if there is no k-space consistency
term

 Hybrid-domain training or dual-domain training gained more popularity recently
 More robust reconstruction results with the k-space consistency constraints
* Features from both domains can be complementary

* Jransforming data between both domains or iterative processing can lead to
longer inference time



How to handle complex-valued signals

» Different approaches to process complex-valued images Magnitude ~ __Phase
* (1) Use magnitude and phase images as two inputs =N

* (2) Use real and imaginary parts as two channels

* (3) Use complex-valued operations (including convolutions, pooling,
activation functions...) in the deep learning network



How to handle complex-valued signals

o Separate magnitude and phase networks! can be trained to reconstruct
images from undersampled data

Network output

Magnitude,
X] A Magnitude
network

Phase mask

Phase
network

[1] Lee et al., IEEE TBE 2018



How to handle complex-valued signals

* Using real and imaginary parts as two separate channels and letting the
kernels learn their relationships is probably the most popular approach.

Input Output Final results
Real/Imaginary parts Real/Imaginary parts Magnitude/Phase images




How to handle complex-valued signals

 We can use complex-valued operations instead of real-valued operations in
the neural network?.

Complex convolution

Wxd=X+iY)*x@+ib)=X*xa—-Y xb)+i(Y *xa+ X xb)

Complex activation function

modReLU (d) = ReLU (|d| + b) €'

CReLlU (d) = ReLU (Re {d})+ iReLU (Im {d})

[1] Cole et al., MRM 2021



Incorporating the single acquisition model

 We can incorporate the “k-space consistency term” into the DL network
* MoDL (Model-based Deep Learning architecture for inverse problem)
* Replace sparsity constraints (in CS formulation) with a deep learning network

Formulate as an : 2 2
X = argmin Fx — x— Con
optimization problem recon ST, ” v Y ” 2 +4 ” ConvNei(x) ” p)

An unrolled network with two main blocks

(1) A ConvNet to reduce artifacts / improve image quality

(2) A data consistency layer for k-space data consistency

Conv
}

—> BN —

}
RelU

Layer 1 Layer 2

AHp Dw =1 — Nu‘ <k (AHA T )\I)_l

. - ./:I:.fk_+_1
CNN-based > Conjugate Gradient

Denoiser DC Layer
Ilterate

(b) Proposed Model-based Deep Learning (MoDL) architecture

(a) The Residual learning based denoiser

(Figures from: Aggarwal et al., IEEE TMI 2019 )



Overall MoDL architecture

1" Iteration A" Iteration K" |teration
2() I

’D“‘—>DC_‘_".‘ D ‘Y T1. _ DI.“”_.DC

Compressed

k-space sampling Zero-padding sensing MoDL

pattern

Image
results

Error

(Figures from: Aggarwal et al., IEEE TMI 2019 )



Unrolled networks

 Unrolled networks are one of the most popular frameworks for DL MRI
reconstruction as it integrates the strengths of traditional iterative optimization
methods with the learning power of deep neural networks.

* This approach may offer better interpretability and theoretical guarantees of
convergence.



Training In dual domains

* KIKI-net!: Use cross-domain ConvNets for image reconstruction
 One sub-network for k-space completion
* One sub-network for image restoration

[1] Eo et al., MRM, 2018



Training In dual domains

Results from single-domain CNN vs. cross-domain CNN
(undersampled factor R=4)

Full-sampled ‘ SD-CNNs ﬁ CD-CNNs
' 111 [T1I-net KKK-net [KIK-net KIKI-net

Full-sampled (magnified) Zero Filling
C1 g | E¢—". | Bt bt

- - - -
~ — ~ - ~ e ~ -
o ——— - - o ——— -

(Figure from: Eo et al., MRM 2018 )



Utilizing the information from multi-contrast images

 MRI dataset sometimes involves images with multiple contrasts. Using this
information shared across different contrasts may improve reconstruction
accuracy.

(Figures from: Sun et al., IEEE TIP 2019 )



Clinical workflow considerations

* Eventually, if you want to make your DL applications useful and compatible
with the clinical workflow, you may need to consider...

* (1) Integration with existing systems: PACS compatibility, DICOM compliance,
seamless integration

* (2) Reconstruction speed: low latency, hardware efficiency

* (3) Robustness and generalizability: to be applied in different sequences,
different scan setups



Short summary

* Directly transplanting network architectures or training strategies from other
computer vision tasks to MRI reconstruction may already give you reasonable
results.

 However, incorporating information regarding MRI physics (e.g., k-space
consistency, images with multiple contrasts) may lead to a more robust MRI
reconstruction network with higher fidelity.



Part 4: Challenges of deep learning
MRI reconstruction



Challenges of DL MRI reconstruction

* (1) Hallucinations

* Realistic-looking image features, which are not actually in the acquired data, may
appear on the reconstructed images

e (2) Data scarcity

 Healthcare data are more sensitive and public datasets are less available than other
computer vision tasks

* Fully-sampled high-quality data may not be available due to physics limitations
* (3) Generalizability

« Some DL models will be dataset dependent and may not generalize well to all
sequences or body parts

* (4) Interpretability

* The “failure mode” for DL recon is sometimes not clear, compared to conventional
model-based approaches

* |Let’s see how these problems can be (partially) mitigated



Hallucinations

» Hallucinations (remove essential features or adding unrealistic features) can
have serious implications for clinical decisions.

e Can you spot the hallucination?

This is a DL reconstructed image

(Figures from: Bhadra et al., IEEE TMI 2021)



Hallucinations

» Hallucinations (remove essential features or adding unrealistic features) can
have serious implications for clinical decisions.

e Can you spot the hallucination?

This is a DL reconstructed image Reference image

(Figures from: Bhadra et al., IEEE TMI 2021)



Hallucinations

Reference

Generating a
false vessel

Generating bright
signal mimicking
a cleft of
cerebrospinal fluid

Generating a

false sulcus

or prominent
vessel

DL recon

Difference

SSIM scores are relatively high.
But it does not mean there iIs
no hallucination.

These three examples are from
top-performing models in 2020
fastMRI reconstruction challenge.

(Figures from: Muckley et al., IEEE TMI 2021)



Can we reduce the occurrence of hallucinations?

* This effect may be reduced through training with a large datasets and better
training strategies.

 Furthermore, we can perform “perturbation analysis” to investigate how a
trained network model distorts the images.

MRI data Recon§truction

e N o R Perturbation
: 3 Response
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(Figures from: Chang et al., MRM 2021)



Perturbation analysis

Perturbation GRAPPA SENSE-TV AC-LORAKS U-Net

(Figures from: Chang et al., MRM 2021)



Scenarios when reference data not available

* Fully-sampled high-quality MRI data are not always available because of
limitations on MRI physics.

 For example:
* (1) High temporal resolution cardiac cine images
e (2) High SNR, high resolution 3D images
* (3) Liver imaging but the acquisition time is far beyond one breath-hold



Self-supervised training with limited data

o Self-supervised physics-guided reconstruction?
* Deep learning reconstruction without fully-sampled reference dataset

* Acquired k-space was split into 2 disjoint sets for self-supervision during
training.

Acquired
k-space Iocatlons Q

U

Training Loss Metric

\
A(f( )

Network input Network output

Unit1 =» Unit2 «+=> UnitT ¢ 3
Unrolled Network ’ '

[1] Yaman et al., MRM, 2020



Self-supervised training with limited data

* |mage from self-supervised learning show similar performance compared to
the supervised method.

Fully-Sampled ) Supervised Proposed
Reference O - DL- MRI Self-Supervised

B 8 4 /
". ‘ , yy . \ yy y’ i ¢ .
v - - - < B X W,
- v B . | B ' T ) |

.:’/’
B

'Iv‘

Reconstructed

Difference
Images(x10)

(Figure from: Yaman et al., MRM 2020 )



Publicly available MRI k-space datasets

e fastMRI (https://github.Com/facebookresearch/fastl\/lRI)
 Knee, brain, prostate and breast MRI
« SKM-TEA (https://github.com/StanfordMII\/II/skm-tea)
* Quantitative knee MRI with tissue segmentation
e M4Raw (https://github.com/mylyu/M4Raw)
* Multi-contrast multi-repetition 0.3 T brain MR
« CMRxRecon (https://github.com/Cmerecon/CI\/IRxRecon—SCiData)
 Cardiac Cine MRI and cardiac quantitative MRl

@A nnnnnnnnnnnnn

Format conversion using

[



https://github.com/facebookresearch/fastMRI
https://github.com/StanfordMIMI/skm-tea
https://github.com/mylyu/M4Raw
https://github.com/CmrxRecon/CMRxRecon-SciData

“Failure mode” of MRI reconstruction

 Below image is reconstructed using parallel imaging...where are the artifacts?




“Failure mode” of MRI reconstruction

 Below image is reconstructed using parallel imaging...where are the artifacts?

Duplicate copies (motion artifacts)

Noise amplification (parallel imaging artifacts )



Failure mode of DL recon is not always clear

* “Failure mode” of parallel imaging techniques, such as noise amplification, is
pretty well-known. Radiologists may “read through” those artifacts.

 However, when and how DL recon can falil is not clearly known...



Uncertainty quantification in DL MRI reconstruction

 UP-Net (Uncertainty-aware Physics-driven deep learning network)

* Uncertainty information incorporated into deep learning-based artifact
suppression and parameter mapping

Self-gating and coil combination UP-Net with 2 concatenated modules

3D multi-echo . 3D self-gated .
stack-of-radial Self-gating NUFFT and multi-echo images I:I Input self-gated images to UP-Net

k-Space data Radlal USing a 40% beamforming- 3D image (echo 1)‘

trajectory  acceptance window based g slices u Output enhanced images and quantitative maps from UP-Net

calibration

K Ahha ] coil combination 3D image (echo 2) Network and loss functions used only in the training process
ﬁ . .
> slices
calibration v
spokes vy “e, Complex Complex

fat signal water signal

2D slice extraction

||ﬁ - pll
Ltmu:rt = —
u

log(id).

Single 2D slice Single 2D slice De;i(:(::tgorr
I
self-gated enhanced P

] ) . . mapping
multi-echo images multi-echo images /

1 : ’ .,f“ / { ‘ s '
/] e -
' A
I ) ¥ 0s*! 00s"! 300Hz
4 Uncertainty maps
R, Field map
Decoder for

uncertainty
estimation

Real/imag components Real/imag components

from the 6 echoes from the 6 echoes P s The output contains a softplus layer

stacked along channel stacked along channel for non-negative uncertainty values

[1] Shih et al., MRM, 2023



UP-Net

» Additional uncertainty map provided by the deep learning network can be
used to estimate errors in the deep learning results

Reference PDFF maps  PDFF maps output PDFF errors PDFF uncertainty
(FB + CS + GQ) (FB + UP-Net) (UP-Net vs. CS+GC) (FB + UP-Net)

ROI = 12.53% ROI = 12.08% | o

(Figure from: Shih et al., MRM 2023 )



Part 5: Deep learning MRI applications
beyond reconstruction



DL MRI applications beyond reconstruction

* There are many applications where deep learning can be a helpful tool
* (1) MRI trajectory design
e (2) Automatic image plane prescription
e (3) Motion vector field estimation

* (4) Combination of reconstruction and downstream tasks (segmentation,
classification)

e ... and much more



MRI trajectory design

* Deep learning can help design or uncover new sampling trajectories with
improved efficiency or reduced artifacts’.

Radial MRI and
learned trajectory

CS reconstruction

DL reconstruction

Radial [1] Wang et al., IEEE TMI 2022

fully-sampled



Automatic image plane prescription

 Use deep learning to help automatic selection of imaging plane for improved
efficiency’.

SSFSE GRE
3\| 3-plane 3-plane |~ | 3-plane
J\ Localizer Localizer | . Localizer

Manual — At

[1] Geng et al., JMRI 2022



Motion vector field estimation

 Deep learning can help estimation motion fields between images from
different motion states!.

ynamic B a Output DVF

[1] Terpstra et al., Phys Med Biol 2020



Part 6: Discussion



Commercial DL recon products

 Major MRI vendors have started to provide deep learning reconstruction
products that can reduce scan time or reduce image noise.

* The products may still be limited to certain sequences or body parts.

Siemens - Deep Resolve GE - AIR Recon DL

Conventional Deep Resolve . . . . ™
MAGNETOM Vida oy iy Left: Conventional Right: AIR™ Recon DL

PAT 1, TA 2:12 min PAT 4, TA 0:36 min Coronal PD FatSat FSE, Coronal PD FatSat PROPELLER
28 slices, 0.4x0.4x4.0mm? 28 slices, 0.2x0.2x4.0mm? 0.3x0.4x 3 mm, 2:13 min. 0.3x0.3x 3 mm, 2:57 min.

From: https://www.siemens-healthineers.com/magnetic-resonance-imaging/technologies-and-innovations/deep-resolve From: https://www.gehealthcare.com/products/magnetic-resonance-imaging/air-recon-d|



https://www.gehealthcare.com/products/magnetic-resonance-imaging/air-recon-dl
https://www.siemens-healthineers.com/magnetic-resonance-imaging/technologies-and-innovations/deep-resolve

Publicly available k-space datasets

e fastMRI (https://github.Com/facebookresearch/fastl\/lRI)

 Knee, brain, prostate and breast MRI

« SKM-TEA (https://github.com/StanfordMII\/II/skm-tea)

* Quantitative knee MRI with tissue segmentation

e M4Raw (https://github.com/mylyu/M4Raw)

* Multi-contrast multi-repetition 0.3 T brain MR

« CMRxRecon (https://github.com/Cmerecon/CI\/IRxRecon—SCiData)

 Cardiac Cine MRI and cardiac quantitative MRl

@ Anonymization

‘ .
ormat con

version using

HE
@F



https://github.com/facebookresearch/fastMRI
https://github.com/StanfordMIMI/skm-tea
https://github.com/mylyu/M4Raw
https://github.com/CmrxRecon/CMRxRecon-SciData
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* [here are many opportunities, but there are also many open questions.

 What are the remaining challenges for deep learning-based MRI
reconstruction?

e [et’'s ask ChatGPT...

What are the remaining challenges for deep learning-based MRI reconstruction?




Remaining challenges

* Limitations of deep learning-based MRI reconstruction
* |nsufficient training data

* Even though there are more public large datasets in recent years, obtaining diverse
and representative datasets is still challenging.

* Lack of interpretability / “Failure mode” not clear

* The black-box nature of deep learning can be problematic for clinical acceptance
and trust.

* Uncertainty quantification or theory to explain deep learning are being investigated
* (Generalization to different acquisition parameters

* Potential solution would be including large datasets with all different acquisition
parameters or including sequence parameters as inputs.

 Computational complexity
* The hardware keeps advancing and it can still be expensive.



If you want to do DL MRI reconstruction...

Focus on the problem you want to solve (to improve image quality? to allow higher
undersampling factors? to train without fully-sampled data?...).

Have a good understanding on the deep learning tools you have. Choose or
develop methods or architectures that can solve the problem.

Understand your data and be aware of the MRI signal model and the
acquisition process. There can be constraints or there can be some prior
information to utilize.

Don’t get lost in numbers! Don’t forget the clinical problem.



Thanks! i|: = EI
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* Jo provide feedback for the lectures:
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Questions?
Contact: Shu-Fu Shih

Email: sshih@mednet.ucla.edu



