Class Business

- Office hours
 - Instructors: Fri 10 am - 12 pm, starting 4/19
 - TA: Xinran Zhong, Tue 3-5 pm
 - email beforehand would be helpful

- Homework 1 due 4/26 Fri

- Follow Brian’s Bloch sim tutorial

- Final presentation date/time
 - 6/11 Tue and/or 6/13 Thu
 - conflicts? email instructors
Outline

• Gradient Echo (GRE)
• Rapid Gradient Echo
 - Balanced SSFP
 - Gradient-spoiled GRE
 - RF-spoiled GRE
• Comparison
• Extensions and Variations
• Applications
Gradient Echo

RF

θ

G_z

θ

TR

G_y

G_x

TE

ADC

T_2^* decay
Gradient Echo

- Gradient reversal on the readout axis forms the echo (vs. RF spin echo)
- A.k.a. gradient-recalled echo, gradient-refocused echo, field echo
- Flip angle θ typically $< 90^\circ$
- M_{xy} has T_2^* instead of T_2 decay
- Advantageous for fast 3D imaging
Gradient Echo

• Basic steps
 - RF excitation (flip angle θ and phase ϕ)
 - Free precession (from G and ΔB)
 - T_1 and T_2 (or T_2^*) relaxation

• Steady state
 - “Dynamic equilibrium”
 - Established after initial transient state
 - M_z and M_{xy} remain the same, TR to TR
 - Need to meet certain conditions
Gradient Echo

- When $TR > 5 \cdot T_2^*$, M_{xy} naturally “spoiled”
- To the board …
Gradient Echo

Steady-state signal equation:

\[M_{xy,ss}(TE) = \frac{M_0 \sin \theta (1 - E_1)}{1 - \cos \theta E_1} e^{-\frac{TE}{T_2^*}} \]

Ernst angle:

\[\theta_E = \cos^{-1}(E_1) \]

\[E_1 = e^{-\frac{TR}{T_1}} \]
Gradient Echo

Ernst angle:

$\theta_E = 64^\circ$

$WM\ T_1 = 600\ ms,\ T_2 = 80\ ms$
Gradient Echo

• T_1-weighted image contrast
 - M_{xy} gone at end of each TR
 - TE controls T_2^* weighting

• Typical $T_2^* \sim 50$ ms
 - need TR ~ 250 ms for “natural” spoiling

• Reduce TR and maintain T1w contrast?
 - rapid GRE with appropriate spoiling
Rapid Gradient Echo

- Rapid imaging with TR $\ll T_2 < T_1$

- Steady state
 - Involves a mixture of M_z and M_{xy}
 - Necessary and sufficient conditions:
 1. Constant RF flip angle θ
 2. Constant TR
 3. Constant dephasing β between RF pulses
 4. RF phase $\phi_n = a + bn + cn^2$

Gradient Echo

RF

θ

long TR

G_z

G_y

G_x

ADC

...
Rapid Gradient Echo

\(RF \)

\(G_z \)

\(G_y \)

\(G_x \)

\(ADC \)

\(\theta, \phi \)

\(\theta, \phi \)

\(\theta, \phi \)

\(\theta, \phi \)

\[\text{TR} \ll T_2 \]

Manage/utilize remaining \(M_{xy} \)
Balanced SSFP

RF

θ, ϕ

G_z

G_y

G_x

ADC
Gradient-spoiled GRE

RF

G_z

G_y

G_x

ADC
Gradient & RF-spoiled GRE

RF

\(\theta, \phi \)

\(G_z \)

\(G_y \)

\(G_x \)

ADC
Rapid Gradient Echo

<table>
<thead>
<tr>
<th>General terminology</th>
<th>Siemens</th>
<th>GE</th>
<th>Philips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced SSFP</td>
<td>bSSFP</td>
<td>TrueFISP</td>
<td>FIESTA</td>
</tr>
<tr>
<td>Gradient-spoiled GRE</td>
<td>SSFP-FID</td>
<td>FISP</td>
<td>GRASS</td>
</tr>
<tr>
<td></td>
<td>SSFP-Echo</td>
<td>PSIF</td>
<td>SSFP</td>
</tr>
<tr>
<td>Gradient and RF-spoiled GRE</td>
<td>Spoiled GRE</td>
<td>FLASH</td>
<td>SPGR</td>
</tr>
</tbody>
</table>

cf. Table 14.1, *Handbook of MRI Pulse Sequences*

cf. “MRI Acronyms”, Siemens Healthcare
Balanced SSFP

RF

G_z

G_y

G_x

ADC
Balanced SSFP

• All gradients are balanced
 - β from $G_x, G_y, G_z = 0$
 - β only comes from ΔB

• Typically use $\phi_n = n \cdot \pi$ ($\Delta \phi = \pi$)

• Typically use $TE = TR/2$
 - M_{xy} actually has T_2 (not T_2^*) decay\(^1\)

• Contrast depends on T_1 and T_2

\(^1\)Ganter C, MRM 2006; 56:687-691
Balanced SSFP

• To the board …
Balanced SSFP

Steady-state signal equation \((\beta = 0)\):

\[
M_{xy,ss}(TE) = M_0 \sin \theta \frac{1 - E_1}{1 - (E_1 - E_2) \cos \theta - E_1 E_2} \sqrt{E_2}
\]

\[
E_1 = e^{-\frac{TR}{T_1}}
\]

\[
E_2 = e^{-\frac{TR}{T_2}}
\]

\[
\sqrt{E_2} = e^{-\frac{TE}{T_2}}
\]
Balanced SSFP

Steady-state signal equation ($\beta = 0$):

If $\text{TR} \ (3\text{-}5 \text{ ms}) \ll T_2$, $E_1 \sim 1\text{-}\text{TR}/T_1$ and $E_2 \sim 1\text{-}\text{TR}/T_2$:

$$M_{xy,ss}(\text{TE}) = \frac{M_0 \sin \theta}{(T_1/T_2)(1 - \cos \theta) + (1 + \cos \theta)} \sqrt{E_2}$$

T_2/T_1 contrast weighting

$$\theta_{max} = \arccos\left(\frac{T_1 - T_2}{T_1 + T_2}\right) \quad M_{xy,ss}(\theta_{max}) \sim \frac{M_0}{2} \sqrt\frac{T_2}{T_1}$$

When $T_1 = T_2$, $\theta_{max} = 90^\circ$, $M_{xy,ss} \sim 0.5 \ M_0$!
Balanced SSFP

SS signal as a function of flip angle:

- $\text{TR} = 5 \text{ ms}$
- $\Delta \phi = 0$
- $\beta = \pi$

$T_1 = 1000 \text{ ms}$, $T_2 = 100, 200, 500, 1000 \text{ ms}$
Balanced SSFP

SS signal as a function of off-resonance:

\[TR = 5 \text{ ms} \]
\[\Delta \phi = 0 \]

\[T_1 = 1000 \text{ ms}, \ T_2 = 100, 200, 500, 1000 \text{ ms} \]
Balanced SSFP

SS signal as a function of off-resonance:

TR = 5 ms \(\Delta f = \pm 100 \) Hz
\(\Delta \phi = 0 \)

Recall \(\beta = 2\pi \Delta f \times TR \) and \(\Delta f = \gamma B / 2\pi \)

\(\beta = \pm \pi \) corresponds to \(\Delta f = \pm 1/(2 \ TR) \) Hz

TR = 5 ms: \(\Delta f = \pm 100 \) Hz
TR = 2.5 ms: \(\Delta f = \pm 200 \) Hz
Balanced SSFP

SS signal as a function of off-resonance:

$\text{TR} = 2.5 \text{ ms}$

$\Delta \phi = 0$

$T_1 = 1000 \text{ ms}$, $T_2 = 100, 200, 500, 1000 \text{ ms}$
Balanced SSFP

SS signal as a function of off-resonance:

$$\Delta \phi = \pi$$

$$\Delta \phi$$ can shift the off-resonance response
Balanced SSFP

SS signal as a function of off-resonance:

$TR = 2.5 \text{ ms}$

$\Delta \phi = 0$

$T_1 = 1000 \text{ ms}$, $T_2 = 1000 \text{ ms}$
Balanced SSFP

Banding artifacts at 3 T:
Balanced SSFP

- Banding artifacts
 - bSSFP has freq-dep null bands
 - spatially varying field inhomogeneity
 - shim not perfect
 - worse at high field (e.g., 3 T vs 1.5 T)

- Mitigating banding artifacts
 - reduce TR
 - custom shim; shift center freq
 - phase cycling
Balanced SSFP

• Phase cycling - to the board ...
Balanced SSFP

- Removing banding artifacts
 - Multi-acquisition bSSFP (phase cycled)
 - Image reconstruction (rSoS, MIP, etc.)
Balanced SSFP

Transition to steady state:

\[TR = 5 \text{ ms} \]
\[\Delta \phi = \pi \]
\[\theta = 60^\circ \]

\[T_1 = 600 \text{ ms}, \ T_2 = 100 \text{ ms} \]
Balanced SSFP

Transition to steady state:

\[\text{TR} = 5 \text{ ms} \]
\[\Delta \phi = \pi \]
\[\theta = 60^\circ \]

\[T_1 = 600 \text{ ms}, \ T_2 = 100 \text{ ms} \]
Balanced SSFP

• Transient state
 - approach to steady state can take $5 \cdot T_1$
 - depends on sequence and tissue params
 - longer transition for larger θ
 - artifacts and variable image contrast

• Catalyzation pulses
 - achieve smoother transition to steady state
 - simple approach: $\theta/2$ - TR/2 preparation
 - other sophisticated designs
Balanced SSFP

Transition to steady state ($\theta/2$ - TR/2 prep):

Scheffler et al., Eur Radiol; 13:2409-2418
Balanced SSFP

Transition to steady state ($\theta/2$ -TR/2 prep):

$\text{TR} = 5$ ms
$\Delta\phi = \pi$
$\theta = 60^\circ$

$T_1 = 600$ ms, $T_2 = 100$ ms
Balanced SSFP

Transition to steady state ($\theta/2$ -TR/2 prep):

- $TR = 5 \text{ ms}$
- $\Delta \phi = \pi$
- $\theta = 60^\circ$

$T_1 = 600 \text{ ms}, T_2 = 100 \text{ ms}$
Balanced SSFP

• Advantages
 - High SNR efficiency
 - G_x and G_z first moments nulled

• Challenges
 - Field homogeneity
 - TR
 - SAR
 - Catalyzation
 - Bright fat
Gradient-spoiled GRE

RF

G_z

G_y

G_x

ADC

SSFP-FID
Gradient-spoiled GRE

- End-of-TR gradient spoiler
 - typically on G_x and/or G_z
 - Range of β within each voxel
 - M_{xy} is a complex sum of all spins

- Contrast depends on T_1 and T_2
Gradient-spoiled GRE

Steady-state signal equation:

\[
SSFP_{\text{FID}} = M_0 \frac{\sin \theta}{1 + \cos \theta} (1 - (E_1 - \cos \theta) f(E_1, E_2, \theta))
\]

\[
f(E_1, E_2, \theta) = \sqrt{\frac{1 - E_2^2}{(1 - E_1 \cos \theta)^2 - E_2^2(E_1 - \cos \theta)^2}}
\]

When \(TR \gg T_2 \):

\[
SSFP_{\text{FID}} \rightarrow M_0 \sin \theta \frac{1 - E_1}{1 - E_1 \cos \theta}
\]

same as ideally spoiled GRE
Gradient-spoiled GRE

SS signal as a function of flip angle:

bSSFP

$T_1 = 1000\,ms$, $T_2 = 100, 200, 500, 1000\,ms$
Gradient-spoiled GRE

SS signal as a function of off-resonance:

bSSFP

$T_1 = 1000 \text{ ms}$, $T_2 = 100, 200, 500, 1000 \text{ ms}$
Gradient-spoiled GRE

Transition to steady state:

$T_1 = 600 \text{ ms}, \ T_2 = 100 \text{ ms}, \ TE/TR = 2/10 \text{ ms}, \ \theta = 30^\circ$
Gradient-spoiled GRE

(reversed)

RF

θ

θ

θ

Gz

Gy

Gx

ADC

SSFP-Echo
Gradient-spoiled GRE

(reversed)

Steady-state signal equation:

\[
SSFP_{\text{Echo}} = M_0 \frac{\sin \theta}{1 + \cos \theta} (1 - (1 - E_1 \cos \theta) f(E_1, E_2, \theta))
\]

\[
f(E_1, E_2, \theta) = \sqrt{\frac{1 - E_2^2}{(1 - E_1 \cos \theta)^2 - E_2^2 (E_1 - \cos \theta)^2}}
\]

When TR \ll T_1:

\[
\frac{SSFP_{\text{Echo}}}{SSFP_{\text{FID}}} \sim E_2^2 = e^{-2TR/T_2}
\]

higher \(T_2 \) contrast weighting than \(SSFP_{\text{FID}} \)
Gradient-spoiled GRE

SS signal as a function of flip angle:

bSSFP

Different T2/T1 ratios, df = 100 Hz

GRE (SSFP-Echo)

Different T2/T1 ratios, df = 50 Hz

\[T_1 = 1000 \text{ ms}, \; T_2 = 100, 200, 500, 1000 \text{ ms} \]
Gradient-spoiled GRE

- Image characteristics
 - no banding (averaged in voxel)
 - SSFP-FID: T_2/T_1 contrast
 - SSFP-Echo: more T_2 contrast
 - sensitive to motion / flow / diffusion

- When all gradients are balanced
 - SSFP-FID and SSFP-Echo coalesce
 - T_2 instead of T_2^* weighting
 - Balanced SSFP!
Gradient & RF-spoiled GRE

RF

θ, ϕ

G_z

G_y

G_x

ADC
Gradient and RF-spoiled GRE

- RF spoiling (quadratic)
 - $\phi_n = \phi_{n-1} + n\phi_0 = (1/2)\phi_0(n^2 + n + 2)$
 - typically $\phi_0 = 50^\circ$ or 117°
 - ADC phase each TR also needs to match ϕ_n

- T_1-weighted contrast
 - approaches contrast of ideally spoiled GRE
 - at expense of reduced SNR (removes T2w contributions)
Gradient and RF-spoiled GRE

Choice of RF phase increment:

\[TR = 0.02T_1 = 0.02T_2, \alpha = 60^\circ \]

Ernst amplitude

Gradient and RF-spoiled GRE

SS signal as a function of flip angle:

bSSFP

Different T2/T1 ratios, df = 200 Hz

Spoiled GRE

Different T2/T1 ratios, df = 50 Hz

\(T_1 = 100, 200, 500, 1000 \text{ ms}, \ T_2 = 40 \text{ ms} \)
Gradient and RF-spoiled GRE

SS signal as a function of off-resonance:

bSSFP

Different T2/T1 ratios, $\theta = 60$ deg

Spoiled GRE

Different T2/T1 ratios, $\theta = 60$ deg

\[T_1 = 100, 200, 500, 1000 \text{ ms} \quad T_2 = 40 \text{ ms} \]
Gradient and RF-spoiled GRE

Transition to steady state:

\[T_1 = 600 \text{ ms}, \ T_2 = 100 \text{ ms}, \ TE/TR = 2/10 \text{ ms}, \ \theta = 30^\circ \]
Gradient and RF-spoiled GRE

- Image characteristics
 - no banding
 - M_{xy} spoiled before next TR
 - T1w contrast with short TR
 - θ controls degree of T_1 contrast
 - TE controls degree of T_2^* contrast
 - robust to motion
Rapid GRE - Comparison

bSSFP Grad spoiled RF spoiled

Hargreaves B, JMRI 2012; 36:1300-1313
Rapid GRE - Comparison

Flip angle

Hargreaves B, JMRI 2012; 36:1300-1313
Rapid GRE - Comparison

<table>
<thead>
<tr>
<th>Pulse Sequence</th>
<th>Mxy</th>
<th>Contrast</th>
<th>SNR</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced SSFP</td>
<td>bSSFP</td>
<td>retained</td>
<td>T₂/T₁</td>
<td>high</td>
</tr>
<tr>
<td>Gradient-spoiled GRE</td>
<td>SSFP-FID</td>
<td>averaged</td>
<td>T₂/T₁</td>
<td>mid</td>
</tr>
<tr>
<td></td>
<td>SSFP-Echo</td>
<td>averaged</td>
<td>T₂+T₂/T₁</td>
<td>mid</td>
</tr>
<tr>
<td>Gradient and RF-spoiled GRE</td>
<td>Spoiled GRE</td>
<td>cancelled</td>
<td>T₁; T₂*</td>
<td>low</td>
</tr>
</tbody>
</table>

SS transition

cf. Hargreaves B, JMRI 2012; 36:1300-1313
Considerations

• Chemical shift

• Flow

• Diffusion
Extensions and Variations

- Partial echo
- Multi-echo
- Ultra-short TE
- Magnetization preparation
- Multiple steady states
Applications

• bSSFP
 - Cardiac
 - MRA
 - T_2-like imaging
 - fMRI
 - phase contrast
 - Mag-prep

Scheffler et al., Eur Radiol; 13:2409-2418
Applications

- SSFP-FID / Echo
 - T_2-like imaging (e.g., cartilage)
 - Bright fluid (bSSFP-like without banding)
 - Diffusion-weighted imaging (SSFP-Echo)
Applications

- Spoiled GRE
 - T1w imaging
 - T_2^* BOLD fMRI
 - Susceptibility-weighted imaging (SWI)
 - Phase contrast
 - Thermometry
 - Time-of-flight MRA
 - Contrast-enhanced imaging
 - Mag-prep imaging
Thanks!

- **Web resources**
 - ISMRM 2010 Edu: Weigel, Bieri, Miller
 - ISMRM 2011 Edu: Weigel, Miller
 - ISMRM 2012 Edu: Miller, Bieri

- **Further reading**
 - Bernstein et al., Handbook of MRI Sequences
 - Haacke et al., Magnetic Resonance Imaging
 - Nishimura, Principles of MRI
 - pubmed.org
Thanks!

• Acknowledgments
 - Suba’s slides from M219 (2014)
 - Brian Hargreaves’s Bloch simulator

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab