Class Business

- Homework 1 due 4/26
- Homework 2 due 5/3
- Final project
 - start thinking
 - come to office hours
 - discussion on 4/23 Tue
 - proposal due 5/10 (not graded)
Outline

• Multi-Pulse Experiments
• Extended Phase Graphs (EPG)

• EPG Simulations
 - Homework 2

• Spin Bench Demo
Multi-Pulse Experiments

• Multiple RF pulses
 - always have echoes (many types)
 - do not need perfect $90^\circ + 180^\circ$ to form SE, etc.

• Analysis
 - Bloch Equations
 - Extended Phase Graphs (EPG)
Spin Echo (2 pulses)
Stimulated Echo (3 pulses)

- 90°_x
- FP, T_2
- FP, T_2
- 90°_y
- FP, T_2
- T_1
Multiple Pulse Experiments

Scheffler, Concepts in MR 1999
Multiple Pulse Experiments

Scheffler, Concepts in MR 1999
Multiple Pulse Experiments

Scheffler, Concepts in MR 1999
Multiple Pulse Experiments

- RF pulses act on an ensemble of spins
 - M_z to M_{xy}
 - M_{xy} to M_z, M_{xy} and M_{xy}^*

- Transverse F states
 - $F = M_x + iM_y = F_{pos}$; $F^* = M_x - iM_y = F_{neg}$

- Longitudinal Z states
Multiple Pulse Experiments

Signal Pathways on a Phase Diagram (i.e. EPG)

Z states appear as broken lines; F_0 states are echoes

Scheffler, Concepts in MR 1999
Extended Phase Graphs

- MR signal is a sum of all dephased spins
- Bloch equation
 - tracks evolution of magnetization for each spin
 - exact, but hard to visualize intuitively
- EPG
 - considers groups of spins under constant gradients
 - decomposes the spin system into several dephased states: F_k and $F_{-k}; Z_k$

Hennig, JMR 1988; 78:397-407
Extended Phase Graphs

- Based on Fourier space coordinate k

$$k_n(t) = \gamma \int_{t'=0}^{t} G_n(t')dt' = \int_{t'=0}^{t} g_n(t')dt',$$

- Magnetization represented by Fourier transforms

$$F_+(k) = \int_{V} \{M_x(r) + iM_y(r)\} \exp(-ikr)d^3r,$$

$$F_-(k) = \int_{V} \{M_x(r) - iM_y(r)\} \exp(-ikr)d^3r,$$

$$Z(k) = \int_{V} M_z(r) \exp(-ikr)d^3r,$$

- Complete magnetization is described by vector F of various EPG partitions states with different k

$$F = (F_0Z_0F_1F_{-1}Z_1F_2F_{-2}Z_2 \cdots F_{+k}F_{-k}Z_k)^T.$$
Gradient Dephasing

Gradient Dephasing

Gradient Dephasing

Gradient G
(z-direction presumed)

\[\tilde{F}_+(k_1), \tilde{F}_+(k_2), \tilde{F}_+(k_3), \tilde{F}_+(k_4) \]

$slope \sim gradient G$

\[G \]

Time t
Gradient Dephasing

Brian Hargreaves and Karla Miller ISMRM 2013: Educational E-Poster #3718
“Discrete” Gradient Dephasing

k is the number of twists/cycles across a voxel

Brian Hargreaves and Karla Miller ISMRM 2013: Educational E-Poster #3718
RF Pulse

- Woessner Decomposition magnetization after an RF pulse can be regarded as a composition of 3 components:
 - transversal component that is unaffected (0°-pulse)
 - transversal component that is refocused (180°-pulse)
 - a longitudinal component

RF Pulse

The RF pulse operator splits any given EPG state with dephasing order k into 3 different new states:
- a transversal state with identical k
- a transversal state with inverted k
- a longitudinal state with identical k
mixes F and Z states!

Brian Hargreaves and Karla Miller ISMRM 2013: Educational E-Poster #3718
RF Pulse

EPG Concept Summary

Fourier based configuration states

Phase graph approach that depicts the evolution of a complete isochromat ensemble.

RF pulse partitioning

\[
M_{xy}(z) = \sum_{n=-N}^{N} F_n e^{-i2\pi nz}
\]

\[
M_z(z) = \text{Real} \left\{ \sum_{n=0}^{N} Z_n e^{-i2\pi mz} \right\}
\]
EPG "Calculus"

• RF pulse for state k:
 - Produces signal in longitudinal state k and transverse states k and $-k$

• Gradient dephaser for state k:
 - Moves transverse magnetization to $k+1$
 - Does not affect longitudinal magnetization
EPG: Spin Echo

- Rotation angles: 90°, 180°
- Time points: T₁, T₂
- Frequency points: F₀, F₁, F₂, F₋₁
- Echo points: Z₁
- Sequence: SE
EPG: Stimulated Echo
EPG: 3-Pulse Experiment

EPG: Train of Spin Echo
EPG: CPMG

\(F_0 = \) observable signal ("Echo")
EPG: Matrix formulation

- Phase states
 - Can represent as a matrix:

\[
P = \begin{bmatrix}
F_0 & F_1 & F_2 \\
F_0^* & F_{-1} & F_{-2} \\
Z_0 & Z_1 & Z_2 \\
\end{bmatrix}
\]
EPG: Matrix formulation

• RF pulses
 - invert state (e.g., F_3 to F_{-3}) or can transfer between F and Z states
 - Simple pre-multiplication $P' = RP$, where R is

$$
\begin{pmatrix}
\cos^2 \frac{\alpha}{2} & e^{2i\Phi} \sin^2 \frac{\alpha}{2} & -ie^{i\Phi} \sin \alpha \\
\frac{e^{-2i\Phi} \sin^2 \frac{\alpha}{2}}{2} & \frac{\cos^2 \frac{\alpha}{2}}{2} & ie^{-i\Phi} \sin \alpha \\
\frac{-ie^{-i\Phi} \sin \alpha}{2} & \frac{i e^{i\Phi} \sin \alpha}{2} & \cos \alpha
\end{pmatrix}
$$

for an RF pulse with flip angle α and phase ϕ

Scheffler, Concepts in MR 1999
EPG: Matrix formulation

- Gradients (in discretized units)
 - Increase number of states by 1
 - Replace all F_k states with F_{k-1}
 (e.g., F_0 becomes F_1)
 - Replace F_0 using F_0^*
 - Do not change Z states

phase states grow linearly w.r.t. TSE ETL
EPG: Matrix formulation

- Relaxation
 - Transverse:
 All \(F \) states attenuated by \(E_2 = \exp(-T/T_2) \)
 - Longitudinal:
 All \(Z \) states attenuated by \(E_1 = \exp(-T/T_1) \)
 \(Z_0 \) state only has recovery of \(M_0(1-E_1) \)
EPG: Extensions

- Non-ideal slice profiles
- Variable RF flip angle and phase
- Motion / flow effects
- Diffusion effects
 - Weigel M, et al., JMR 2010; 205: 276-285
EPG Simulation

- Phase state propagation
 - RF pulse
 - T_1, T_2 decay
 - free precession
 - gradient pulse
Phase states:

\[P = \begin{bmatrix}
F_0 & F_1 & F_2 & \cdots \\
F_0^* & F_{-1} & F_{-2} & \cdots \\
Z_0 & Z_1 & Z_2 & \cdots
\end{bmatrix} \]

RF pulse \((\theta, \phi)\), \(P^+ = RP\):

\[
R\{\theta,\phi\} = \begin{bmatrix}
\cos^2 \frac{\theta}{2} & e^{2i\phi} \sin^2 \frac{\theta}{2} & -ie^{i\phi} \sin \theta \\
e^{-2i\phi} \sin^2 \frac{\theta}{2} & \cos^2 \frac{\theta}{2} & ie^{-i\phi} \sin \theta \\
-i \frac{1}{2} e^{-i\phi} \sin \theta & i \frac{1}{2} e^{i\phi} \sin \theta & \cos \theta
\end{bmatrix}
\]
EPG Simulation

Gradients:

\[P = \begin{bmatrix} F_0 & F_1 & F_2 & \cdots \\ F_0 \times & F_{-1} & F_{-2} & \cdots \\ Z_0 & Z_1 & Z_2 & \cdots \end{bmatrix} \]

Relaxation:

\[F_k \rightarrow E_2 \, F_k \]

\[Z_k \rightarrow E_1 \, Z_k \quad (k>0) \]

\[Z_0 \rightarrow E_1 \, Z_0 + M_0(1 - E_1) \]
EPG Simulation

- Transient state; steady state
- Different seq/tissue params

- Brian’s MATLAB EPG sim code
 - will be emailed to class mailing list
EPG Simulation

- **Example**: Turbo Spin Echo
 - epg_rf.m
 - epg_grelax.m, epg_grad.m, epg_mgrad.m
 - epg_cpmg_hhw.m
 - EPGSim_CPMG_hhw.m

- can look at different refocusing RF trains
EPG Simulations: FSE

- non-CPMG 180s: 90x-180x-180x-…
- CPMG 180s: 90x-180y-180y-…
- non-CPMG 120s: 90x-120x-120x-…
- CPMG 120s: 90x-120y-120y-…
- CPMG 120s +prep: 90x-150y-120y-…
$T_1 = 1000 \text{ ms}, \ T_2 = 100 \text{ ms}, \ \text{ETL} = 50, \ \text{ESP} = 10 \text{ ms}$
$T_1 = 1000 \text{ ms}, \; T_2 = 100 \text{ ms}, \; \text{ETL} = 50, \; \text{ESP} = 10 \text{ ms}$
F_0 vs. echo number

$T_1 = 1000 \text{ ms, } T_2 = 100 \text{ ms, ETL = 50, ESP = 10 ms}$
EPG Simulation

- Homework 2, part 2A
 - Gradient-spoiled GRE (SSFP-FID)
EPG Simulation

- Homework 2, part 2B
 - RF-spoiled GRE

Scheffler, Concepts in MR 1999, Fig. 11
Homework 2

- Pulse Sequence Simulations
 - 1. Bloch: Steady state comparison, bSSFP transient state and catalyzation
 - 2. EPG: SSFP-FID, RF-spoiled GRE

- Due 5 pm, Fri, 5/3 by email
 - PDF and MATLAB code
Summary

- Multiple RF pulses -> multiple echoes
- EPG analysis
 - consider groups of spins
 - explicit treatment of pathways and echoes
 - flexible and powerful
 - you can do it!
Spin Bench Demo

- bSSFP and other examples
 - phase cycling, …
Thanks!

- **Web resources**
 - ISMRM 2010 Edu: Miller, Weigel
 - ISMRM 2011 Edu: Miller, Weigel

- **Further reading**
 - Bernstein et al., Handbook of MRI Sequences
 - Haacke et al., Magnetic Resonance Imaging
 - Hennig, JMR 1988; 78:397-407
 - Weigel, JMRI 2015; 41:266-295
Thanks!

- Acknowledgments
 - Brian Hargreaves’s EPG slides and code
 - Kyung Sung’s EPG slides
 - Isabel Dregely’s EPG slides

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu
http://mrrl.ucla.edu/wulab