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Class Business

• Final project abstract due on 6/7 Friday 

• Final project presentation on 6/13 
(9-3pm) 

• Guest Lecturers:  

- Dr. Debiao Li (6/4)  
- Dr. Xiaodong Zhong (6/6)



Today’s Topics

• Compressed Sensing 
- Compressibility or Sparsity 

- Incoherent Measurement 

- Reconstruction 

• CS-MRI Examples 

•

Fast MRI Techniques

• Many reconstruction methods minimize 
aliasing artifacts by exploiting information 
redundancy (or prior knowledge) 
- Parallel imaging 

- Compressed sensing

Donoho, IEEE TIT, 2006
Candes et al., Inverse Problems, 2007
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We still can find 8 unknowns!



Math Background
L0-norm (|x|0): a number of non-zero coefficients

L1-norm (|x|1): a sum of absolute values of  
                        coefficients
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L2-norm (|x|2): a sum of squared values of  
                        coefficients
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1) This should be “sparse”

2) This should be “smart”

3) Reconstruction 
should be “feasible”
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Compressed Sensing MRI

x = Φ-1y 

Inverse Fourier  
Transform Φ-1

k-space Image

Choose the most compressible
image matching data 
(systematic optimization)

Systematic Optimization

• Assuming sparsity and incoherence are provided, an 
image can be recovered with highly undersampled 
data by:

minimize |Ψx|1, subject to  y = Φx 
Randomly Undersampled 
Fourier Transform

Sparse Transform 
(e.g., Wavelet Transform)



Systematic Optimization

• Assuming sparsity and incoherence are provided, an 
image can be recovered with highly undersampled 
data by:

minimize |Ψx|1, subject to  y = Φx 

• We can relax the minimization by using 
regularization,

minimize F(x): |y - Φx|2  +  λ|Ψx|1
Regularization Parameter

2

Randomly Undersampled 
Fourier Transform

Sparse Transform 
(e.g., Wavelet Transform)

• Three key elements of Compressed Sensing:

Compressibility

Incoherence

Nonlinear Reconstruction

Three Tenets of CS

Data  
Consistency

Compressibility 
Constraint

minimize F(x): |y - Φx|2  +  R(x)2



Compressibility Constraint
minimize F(x): |y - Φx|2  +  R(x)

Compressibility 
Constraint

2

• R(x) = λ|x|1                (Identity Transform) 

• R(x) = λ|Ψx|1                      (Wavelet Transform)

• R(x) = λH(x)               (Total Variation) 

• R(x) = λ|x|*                 (Rank or Nuclear Norm) 

• Many more…

Wavelet Transform

• Natural images are compressible using 
wavelet transforms

Image Compression Standard: JPEG2000 

Images from Wikipedia



Wavelet Transform

10% Largest 
Coefficients

Wavelet 
Transform

Inverse 
Wavelet 

Transform

MR images are mostly compressible using wavelet 
transforms

MR images are mostly compressible using wavelet 
transforms
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Transform



Total Variation
H(x) =
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Limitations / Considerations

• Define reconstruction domain and exploit information 
redundancy (or prior knowledge) 
- More apparent when MRI is repeated on a same 

object (e.g., repeating with different time points, flip 
angles, TEs, etc) 

• Be aware of underlying assumptions of each 
constraint 
- Wavelet / TV denoising 

• Consistent compressibility is desirable to easily 
anticipate reconstruction quality

Limitations / Considerations

• High vs. low computational complexities 
- Wavelet transform 

- Total Variation 

- Nuclear norm 

• Multiple compressibility constraints vs. single 
constraint 
- Reconstruction quality 

- Reconstruction stability



CS Reconstruction
• Assuming sparsity and incoherence are provided, an 

image can be recovered with highly undersampled 
data by:

minimize |Ψx|1, subject to  y = Φx 

• We can relax the minimization by using regularization,

    minimize F(x): |y - Φx|2  +  λ|Ψx|1  

• When λ carefully chosen, unconstrained minimization 
becomes identical to original minimization

Regularization Parameter
2

Randomly Undersampled 
Fourier Transform

Sparse Transform 
(e.g., Wavelet Transform)

• How can we solve this? 

    Minimize{ f(x) = |y - Φx|2  +  λ|Ψx|1 } 

• Review of convex optimization: 

– A choice for search direction (Δx) can be different (e.g. gradient decent 
method, Newton's method, etc)

2

Solving L1 Minimization



CS-MRI Reconstruction
minimize F(x): |y - Φx|2  +  R(x)

• Minimizing F(x)  is non-trivial since R(x) is not differentiable 
- Linear programming is challenging due to high 

computational complexity 

• Simple gradient-based algorithms have been developed: 
- Re-weighted L1 / FOCUSS 

- IST / IHT / AMP / FISTA 

- Split Bregman / ADMM

I.F. Gorodnitsky, et al., J. Electroencephalog. Clinical Neurophysiol. 1995 Daubechies I, 
et al. Commun. Pure Appl. Math. 2004

Elad M, et al. in Proc. SPIE 2007
T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2009
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To the board ...



CS-MRI Reconstruction

x: Imagey: k-space

w = Ψx

w: Wavelet

|y - Φx|2 < Ɛ

L1-norm
minimize |Ψx|1

CS-MRI Reconstruction

x: Imagey: k-space w: Wavelet

x = Ψ-1wy’ = FT(x)

minimize F(x): |y - Φx|2  +  R(x)



Summary So Far…

Data  
Consistency

Compressibility 
Constraint

minimize F(x): |y - Φx|2  +  R(x)
2

Reconstruction Domain 
Compressibility Constraint 
Incoherent Measurement 

Reconstruction

State-of-the-Art CS-MRI

• Reducing possible reconstruction failure 
- Improve sparse transformations  

- Develop k-space undersampling schemes 

• Integrating CS with DL/parallel imaging 
- Develop compatible undersampling patterns 

- Develop reconstruction methods



State-of-the-Art CS-MRI

• Methods to evaluate CS reconstructed images 
- RMSE / SSIM / Mutual Information 

• Reducing reconstruction time 
- Reduce computational complexity 

- Parallelize reconstruction problems 

• Developing stable reconstruction algorithms 
- Minimize / avoid the number of regularization 

parameters

Deep Learning

From nvidia.com



Types of Machine Learning

Machine Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Task driven
(Regression

/Classification)
Data driven
(Clustering)

Algorithm learns 
to react to 

an environment

Types of Machine Learning

Supervised Learning Unsupervised Learning

Generative ModelDiscriminative
Model



Common Datasets for Deep Learning

• MNIST: 60,000 images, hand writing digits 
(1998) 

• CIFAR-10: 60,000 images,10 classes of 
common objects (2009) 

• ImageNet: 1,300,000 high-res images, 1,000 
classes of object (2012)

Not trivial to build medical imaging database with a high 
number of images and accurate labeling

Key Design Considerations

1. Define clear clinical questions 

2. Design deep learning models 
-Supervised vs. unsupervised learning 
-Descriptive vs. generative modeling 

3. Consider potential limitations 
-Limited amount of training and testing 

data  
-Uncertainties in labeling



MRI Applications

• Regression 
- Prediction of a continuous variable from 

input 

• Segmentation 

• Classification 

• Reconstruction 

• Generative (create new images based on 
current)

Summary

• CS-MRI has a lot of potential but is not a magic box! 

• Always remember key components of CS:  

Reconstruction Domain 

Compressibility (or Sparsity) 

Incoherent Measurement 

Reconstruction



Thanks!

Kyung Sung, PhD 

ksung@mednet.ucla.edu 

http://kyungs.bol.ucla.edu


