Evaluating Health-Related Quality of Life Measures

June 12, 2014 (1:00 – 2:00 PDT) Kaiser Methods Webinar Series

> Ron D.Hays, Ph.D. drhays@ucla.edu

Burden of Kidney Disease Scale

How true or false is each of the following statements for you?

- 1. My kidney disease interferes too much with my life.
- 2. Too much of my time is spent dealing with kidney disease.
- 3. I feel frustrated dealing with my kidney disease.
- 4. I feel like a burden on my family.
 - Definitely True = 100
 - Mostly True = 75
 - Don't Know = 50
 - Mostly false = 25
 - Definitely false = 0

- 1. Same people get same scores
- 2. Different people get different scores and differ in the way you expect
- 3. Measure is interpretable
- 4. Measure works the same way for different groups (age, gender, race/ethnicity)

Aside from being practical..

1. Same people get same scores Relicible

- 2. Different people get different scores and differ in the way you expect
- 3. Measure is interpretable
- 4. Measure works the same way for different groups (age, gender, race/ethnicity)

- 1. Same people get same scores
- 2. Different people get different scores and differ in the way you expect V 1 ↓
- 3. Measure is interpretable
- 4. Measure works the same way for different groups (age, gender, race/ethnicity)

- 1. Same people get same scores
- 2. Different people get different scores and differ in the way you expect
- 3. Measure is interpretable \longrightarrow \square \square
- 4. Measure works the same way for different groups (age, gender, race/ethnicity)

- 1. Same people get same scores
- 2. Different people get different scores and differ in the way you expect
- 3. Measure is interpretable
- 4. Measure works the same way for different groups (age, gender, race/ethnicity) □□□□⁻₈

Validity

Does scale represent what it is supposed to be measuring?

- Content validity: Does measure "appear" to reflect what it is intended to (expert judges or patient judgments)?
 - Do items operationalize concept?
 - Do items cover all aspects of concept?
 - Does scale name represent item content?
- Construct validity
 - Are the associations of the measure with other variables consistent with hypotheses?

Relative Validity Example

Sensitivity of measure to important (clinical) difference

	Severity	of Kidney	UNE WAY		
	None	Mild	Severe	F-ratio	Relative Validity
Burden of Disease #1	87	90	91	2	
Burden of Disease #2	74	78	88	10	5
Burden of Disease #3	77	87	95	20	10

Scale	Age (years)		
(Better) Physical Functioning	(-)		

Scale	Age (years)		
(Better) Physical Functioning	Medium (-)		

Scale	Age (years)		
(Better) Physical Functioning	Medium (-)		

Effect size (ES) = D/SD

D = Score difference SD = SD

Small (0.20), medium (0.50), large (0.80)

Scale	Age (years)		
(Better) Physical Functioning	Medium (-) r ~0.24		

Cohen effect size rules of thumb (d = 0.20, 0.50, and 0.80):

Small r = 0.100; medium r = 0.243; large r = 0.371

$$\frac{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{d}}{\mathbf{(d^2 + 4)^{.5}}} = \frac{0.80}{\mathbf{(0.80^2 + 4)^{.5}}} = 0.80 / [(0.64 + 4)^{.5}] = 0.80 / [(0.64 + 4)^{.5}] = 0.80 / 2.154 = 0.371$$

Scale	Age (years)	Obese yes = 1, no = 0	Kidney Disease yes = 1, no = 0	In Nursing home yes = 1, no = 0
(Better) Physical Functioning	Medium (-)	Small (-)	Large (-)	Large (-)

Cohen effect size rules of thumb (d = 0.20, 0.50, and 0.80):

Small r = 0.100; medium r = 0.243; large r = 0.371

$$\frac{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{d}}{\mathbf{(d^2 + 4)^{.5}}} = \frac{\mathbf{0.80}}{\mathbf{(0.80^2 + 4)^{.5}}} = 0.80 / [(0.64 + 4)^{.5}] = 0.80 / [(0.64)^{.5}] = 0.80 / 2.154 = 0.371$$

Scale	Age (years)	Obese yes = 1, no = 0	Kidney Disease yes = 1, no = 0	In Nursing home yes = 1, no = 0
(Better) Physical Functioning	Medium (-)	Small (-)	Large (-)	Large (-)
(More) Depressive Symptoms	?	Small (+)	?	Small (+)

Cohen effect size rules of thumb (d = 0.20, 0.50, and 0.80):

Small r = 0.100; medium r = 0.243; large r = 0.371

 $\frac{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{d}}{\mathbf{(d^2 + 4)^{.5}}} = \frac{0.80}{\mathbf{(0.80^2 + 4)^{.5}}} = 0.80 / \mathbf{((0.64 + 4)^{.5})} = 0.80 / \mathbf{((4.64)^{.5})} = 0.80 / 2.154 = 0.371$

(r's of 0.10, 0.30 and 0.50 are often cited as small, medium, and large.) $_{16}$

Questions?

Responsiveness to Change

- HRQOL measures should be responsive to interventions that change HRQOL
- Need external indicators of change (Anchors)
 Clinical measure
 - "improved" group = 100% reduction in seizure frequency
 - "unchanged" group = <50% change in seizure frequency
 - Retrospective self- or provider-report of change
 - Much better, A little better, Same, A little worse, Much worse
- Anchor correlated with change on target measure at 0.371 or higher

Responsiveness Index

- Effect size (ES) = D/SD
 - D = raw score change in "changed" (improved) groupSD = baseline SD
- Small: 0.20->0.49
- Medium: 0.50->0.79
- Large: 0.80 or above

Responsiveness Indices

(1) Effect size (ES) = D/SD

(2) Standardized Response Mean (SRM) = D/SD†(3) Guyatt responsiveness statistic (RS) = D/SD‡

D = raw score change in "changed" group;
SD = baseline SD;
SD† = SD of D;
SD‡ = SD of D among "unchanged"

Amount of Expected Change Varies

SF-36 physical function score mean = 87 (SD = 20) \checkmark Assume I have a score of 100 at baseline

Hit by Bike causes me to be

- limited a lot in vigorous activities
- limited a lot in climbing several flights of stairs
- limited a little in moderate activities

SF-36 physical functioning score drops to 75 (-1.25 SD)

Hit by Rock causes me to be

- limited a little in vigorous activities

SF-36 physical functioning score drops to 95 (- 0.25 SD)

Partition Change on Anchor

A lot better
A little better
No change
A little worse

>A lot worse

Use Multiple Anchors

- 693 RA clinical trial participants evaluated at baseline and 6weeks post-treatment.
- Five anchors:
 - 1. Self-report (global) by patient
 - 2. Self-report (global) by physician
 - 3. Self-report of pain
 - 4. Joint swelling (clinical)
 - 5. Joint tenderness (clinical)

Kosinski, M. et al. (2000). Determining minimally important changes in generic and diseasespecific health-related quality of life questionnaires in clinical trials of rheumatoid arthritis. Arthritis and Rheumatism, 43, 1478-1487.

Patient and Physician Global Reports

How are you (is the patient) doing, considering all the ways that RA affects you (him/her)?

- Very good (asymptomatic and no limitation of normal activities)
- Good (mild symptoms and no limitation of normal activities)
- Fair (moderate symptoms and limitation of normal activities)
- Poor (severe symptoms and inability to carry out most normal activities)
- Very poor (very severe symptoms that are intolerable and inability to carry out normal activities

--> Improvement of 1 level **over time**

Global Pain, Joint Swelling and Tenderness

- 0 = no pain, 10 = severe pain
- Number of swollen and tender joints

-> 1-20% improvement over time

Effect Sizes for SF-36 PF Change Linked to Minimal Change in Anchors

Scale	Self-R	ClinR	Pain	Swell	Tender	Mean
Physical Function	<u>.35</u>	.33	.34	<u>.26</u>	.32	.32
						26

Effect Sizes for SF-36 Changes Linked to Minimal Change in Anchors

Scale	Self-R			
PF	.35			
Role-P	.56			
Pain	<u>.83</u>			
GH	<u>.20</u>			
EWB	.39			
Role-E	.41			
SF	.43			
EF	.50			
PCS	.49			
MCS	.42			

Effect Sizes (mean = 0.34) for SF-36 Changes Linked to Minimal Change in Anchors

Scale	Self-R	ClinR	Pain	Swell	Tender	Mean
PF	<u>.35</u>	.33	.34	<u>.26</u>	.32	.32
Role-P	<u>.56</u>	.52	<u>.29</u>	.35	.36	.42
Pain	<u>.83</u>	.70	.47	.69	<u>.42</u>	.62
GH	<u>.20</u>	.12	.09	.12	<u>.04</u>	.12
EWB	<u>.39</u>	.26	.25	.18	<u>.05</u>	.23
Role-E	<u>.41</u>	.28	<u>.18</u>	.38	.26	.30
SF	<u>.43</u>	.34	<u>.28</u>	.29	.38	.34
EF	<u>.50</u>	.47	<u>.22</u>	.22	.35	.35
PCS	<u>.49</u>	.48	<u>.34</u>	.29	.36	.39
MCS	.42	.27	<u>.19</u>	.27	.20	.27

Reliability

- Degree to which the same score is obtained when the *target* or thing being measured (person, plant or whatever) hasn't changed.
- ✓ Inter-rater (rater)

✓Need 2 or more raters of the thing being measured

✓ Internal consistency (items)

✓ Need 2 or more items

Test-retest (administrations)

✓ Need 2 or more time points

Ratings of Performance of Six Kaiser Presentations by Two Raters

[1 = Poor; 2 = Fair; 3 = Good; 4 = Very good; 5 = Excellent]

- 1= Karen Kaiser (Good, Very Good)
- 2= Adam Ant (Very Good, Excellent)
- 3= Rick Dees (Good, Good)
- 4= Ron Hays (Fair, Poor)
- 5= John Adams (Excellent, Very Good)
- 6= Jane Error (Fair, Fair)

(Target = 6 presenters; assessed by 2 raters) ³⁰

Reliability Formulas

Model	Reliability	Intraclass Correlation			
Two-way random	$\frac{N(MS_{BMS} - MS_{EMS})}{NMS_{BMS} + MS_{JMS} - MS_{EMS}}$	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS} + (k-1)MS_{EMS} + k(MS_{JMS} - MS_{EMS})/N}$			
Two- way mixed	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS}}$	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS} + (k-1)MS_{EMS}}$			
One- way	$\frac{MS_{BMS} - MS_{WMS}}{MS_{BMS}}$	$\frac{MS_{BMS} - MS_{WMS}}{MS_{BMS} + (k-1)MS_{WMS}}$			
BMS = Between Ratee Mean Square N = n of ratees WMS = Within Mean Square k = n of items or raters JMS = Item or Rater Mean Square EMS = Ratee x Item (Rater) Mean Square					

01 13 01 24 02 14 02 25 03 13 03 23 04 12 04 21 05 15 05 24 06 12 06 22	Two-Way (Reliability of	y Ranc Ratings	of Presentat	: ts tions)
Source	e	df	SS	MS
Presen	ters (BMS)	5	15.67	3.13
Raters	(JMS)	1	0.00	0.00
Pres. x	Raters (EMS)	5	2.00	0.40
Tota	al	11	17.67	
2-wa	$y R = \frac{6 (3.13 - 0.4)}{6 (3.13) + 0.4}$	<u>0)</u> = 00 - 0.40	= 0.89	ICC = 0.80

Responses of Presenters to Two Questions about Their Health

- 1= Karen Kaiser (Good, Very Good)
- 2= Adam Ant (Very Good, Excellent)
- 3= Rick Dees (Good, Good)
- 4= Ron Hays (Fair, Poor)
- 5= John Adams (Excellent, Very Good)
- 6= Jane Error (Fair, Fair)

(Target = 6 presenters; assessed by 2 items)

01 34 02 45 03 33 04 21 05 54 06 22	ked Eff	ects (Cronl	bach's Alpha)
Source	df	SS	MS
Presenters (BMS)	5	15.67	3.13
Items (JMS)	1	0.00	0.00
Pres. x Items (EMS)	5	2.00	0.40
Total	11	17.67	
Alpha = $3.13 - 0.40$ 3.13	$b = \frac{2.93}{3.13}$	= 0.87	ICC = 0.77

Reliability Minimum Standards

- 0.70 or above (for group comparisons)
- 0.90 or higher (for individual assessment)
 - SEM = SD (1- reliability)^{1/2}
 95% CI = true score +/- 1.96 x SEM
 - if z-score = 0, then CI: -.62 to +.62 when reliability = 0.90
 Width of CI is 1.24 z-score units

Guidelines for Interpreting Kappa

Conclusion	Kappa	Conclusion	Kappa
Poor	< .40	Poor	< 0.0
Fair	.4059	Slight	.0020
Good	.6074	Fair	.2140
Excellent	> .74	Moderate	.4160
		Substantial	.6180
		Almost perfect	.81 - 1.00
Fleiss (1981)		Landis and Koch (1977)	

Questions?

Sufficient Unidimensionality

- One-Factor Categorical Confirmatory Factor Analytic Model (e.g., using Mplus)
 - Polychoric correlations; weighted least squares with adjustments for mean and variance
- Fit Indices
 - Comparative Fit Index, etc.

Local Independence

- After controlling for dominant factor(s), item pairs should not be associated.
 - Look for residual correlations > 0.20
- Local dependence often caused by asking the same question multiple times.
 - "I'm generally sad about my life."
 - "My life is generally sad."

Item-scale correlation matrix

	<u>Depress</u>	<u>Anxiety</u>	<u>Anger</u>
ltem #1	0.80*	0.20	0.20
Item #2	0.80*	0.20	0.20
Item #3	0.80*	0.20	0.20
Item #4	0.20	0.80*	0.20
Item #5	0.20	0.80*	0.20
Item #6	0.20	0.80*	0.20
Item #7	0.20	0.20	0.80*
Item #8	0.20	0.20	0.80*
Item #9	0.20	0.20	0.80*

*Item-scale correlation, corrected for overlap.

Item-scale correlation matrix

	<u>Depress</u>	<u>Anxiety</u>	<u>Anger</u>
ltem #1	0.50*	0.50	0.50
Item #2	0.50*	0.50	0.50
Item #3	0.50*	0.50	0.50
Item #4	0.50	0.50*	0.50
Item #5	0.50	0.50*	0.50
Item #6	0.50	0.50*	0.50
Item #7	0.50	0.50	0.50*
Item #8	0.50	0.50	0.50*
Item #9	0.50	0.50	0.50*

*Item-scale correlation, corrected for overlap.

Posttraumatic Growth Inventory

Indicate for each of the statements below the degree to which this change occurred in your life as a result of your crisis.

Appreciating each day

- (0) I did not experience this change as result of my crisis
- I experienced this change to a <u>very small degree</u> as a result of my crisis
- (2) I experienced this change to a <u>small degree</u> as a result of my crisis
- (3) I experienced this change to a moderate degree as a result of my crisis
- (4) I experienced this change to a <u>great degree</u> as a result of my crisis
- (5) I experienced this change to a <u>very great degree</u> as a result of my crisis

Differential Item Functioning (DIF)

- Probability of choosing each response category should be the same for those who have the same estimated scale score, regardless of other characteristics
- Evaluation of DIF

 Different subgroups
 Mode differences

DIF (2-parameter model)

Thank You!

<u>drhays@ucla.edu</u> (310-794-2294).

Powerpoint file available for downloading at: http://gim.med.ucla.edu/FacultyPages/Hays/