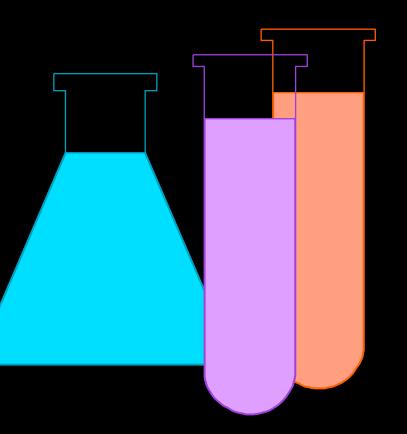


Evaluating Self-Report Data Using Psychometric Methods

Ron D. Hays, PhD (hays@rand.org) February 11, 2004 (3:00-6:00pm)


Four Types of Data Collection Errors

- Coverage Error
 Does each person in population have an equal chance of selection?
- Sampling Error Are only some members of the population sampled?
- Nonresponse Error
 Do people in the sample who respond differ from those who do not?
- Measurement Error

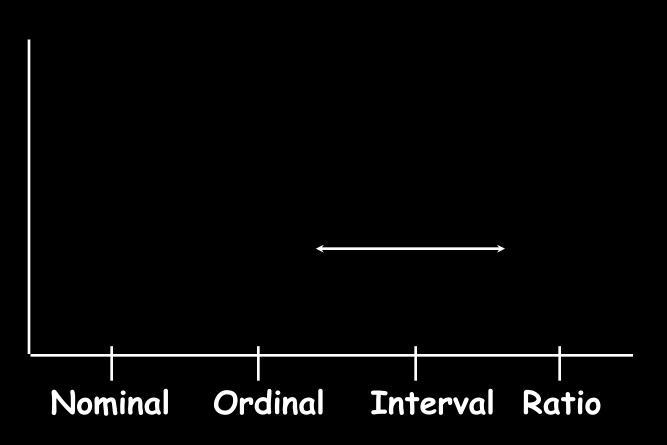
Are inaccurate answers given to survey questions?

What's a Good Measure?

- Same person gets same score (reliability)
- Different people get different scores (validity)
- People get scores you expect (validity)
- It is practical to use (feasibility)

How Are Good Measures Developed?

- Review literature
- Expert input (patients and clinicians)
- Define constructs you are interested in
- Draft items (item generation)
- Pretest
 - Cognitive interviews
 - Field and pilot testing
- Revise and test again
- Translate/harmonize across languages RANDHEALTH

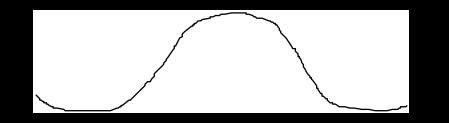

Scales of Measurement and Their Properties

Property of Numbers

Type of Scale	Rank Order	Equal Interval	Absolute 0	
Nominal	No	No	No	
Ordinal	Yes	No	No	
Interval	Yes	Yes	No	
Ratio	Yes	Yes	Yes	

Measurement Range for Health Outcome Measures

RANDHEALTH


Indicators of Acceptability

- Response rate
- Administration time
- Missing data (item, scale)

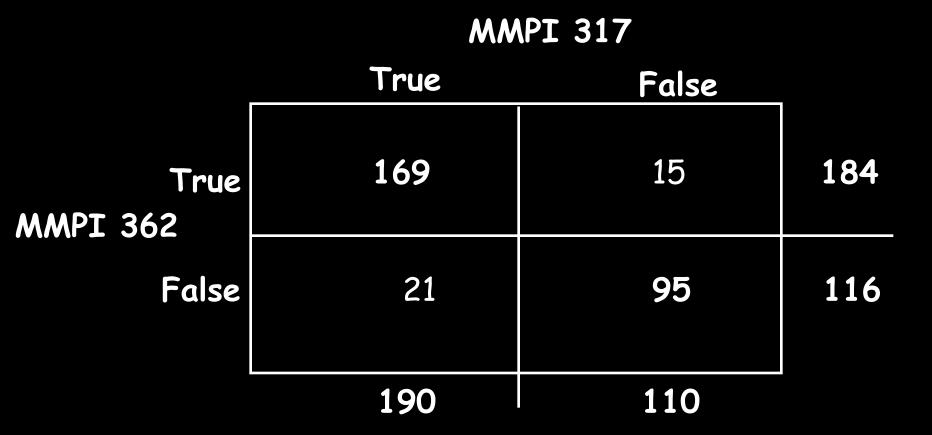
Variability

- · All scale levels are represented
- Distribution approximates bell-shaped "normal"

Measurement Error

observed = true + systematic + random score error error

(bias)

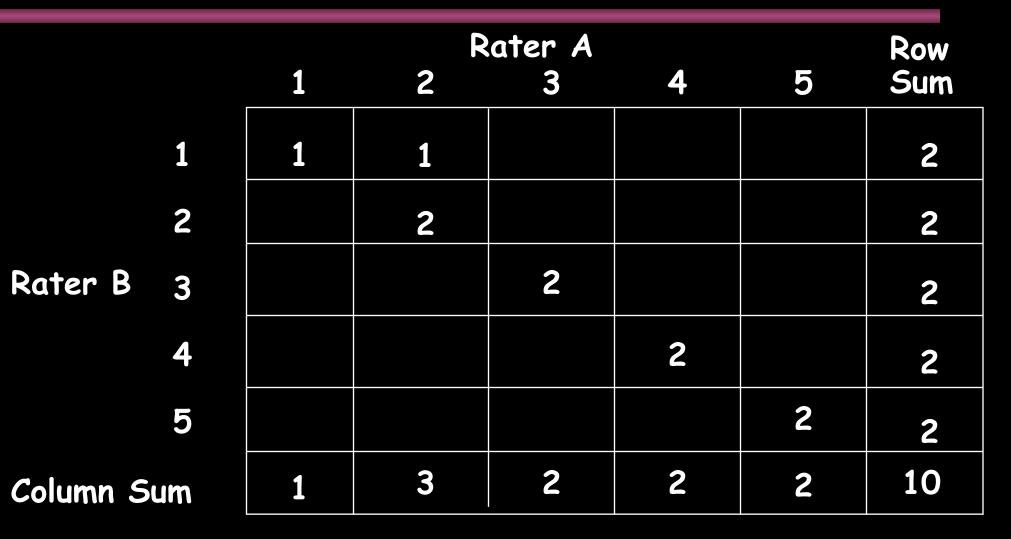

Quality of Care 9 02/11/04

Flavors of Reliability

- Test-retest (administrations)
- Intra-rater (raters)
- Internal consistency (items)

Test-retest Reliability of MMPI 317-362 r = 0.75

I am more sensitive than most other people.


RANDHEALTH

Quality of Care 11 02/11/04

Kappa Coefficient of Agreement (Corrects for Chance)

Example of Computing KAPPA

RANDHEALTH

Example of Computing KAPPA (Continued)

$$P_{c} = \frac{(1 \times 2) + (3 \times 2) + (2 \times 2) + (2 \times 2) + (2 \times 2)}{(10 \times 10)} = 0.20$$

$$P_{obs.} = \frac{9}{10} = 0.90$$

$$Kappa = \frac{0.90 - 0.20}{1 - 0.20} = 0.87$$

RANDHEALTH

Quality of Care 14 02/11/04

Guidelines for Interpreting Kappa

<u>Conclusion</u> Poor	<u>Kappa</u> <.40	<u>Conclusion</u> Poor	<u>Kappa</u> < 0.0
Fair	.4059	Slight	.0020
Good	.6074	Fair	.2140
Excellent	> .74	Moderate	.4160
		Substantial	.6180
		Almost perfect	.81 - 1.00

Landis and Koch (1977)

Fleiss (1981)

RANDHEALTH

Ratings of Height of Houseplants

Plan	t	Baseline Height	Follow-up Height	Experimental Condition	
A1	R1 R2	120 118	121 120	1	
A2	R1 R2	084 096	085 088	2	
B1	R1 R2	107 105	108 104	2	
B2	R1 R2	094 097	100 104	1	
C 1	R1 R2	085 091	088 096	2	Quality o

RANDHEALTH

Ratings of Height of Houseplants (Cont.)

Plan	t	Baseline Height	Follow-up Height	Experimental Condition
C2	R1 R2	079 078	086 092	1
D1	R1 R2	070 072	076 080	1
D2	R1 R2	054 056	056 060	2
E1	R1 R2	085 097	101 108	1
E2	R1 R2	090 092	084 096	2

Reliability of Baseline Houseplant Ratings

Ratings of Height of Plants: 10 plants, 2 raters Baseline Results

Source	DF	SS	MS	F
Plants	9	5658	628.667	35.52
Within	10	177	17.700	
Raters	1	57.8	57.800	
Raters x Plants	9	119.2	13.244	
Total	19	5835		

Sources of Variance in Baseline Houseplant Height

Source	dfs	MS	
Plants (N)	9	628.67	(BMS)
Within	10	17.70	(WMS)
Raters (K)	1	57.80	(JMS)
Raters x Plants	9	13.24	(EMS)

Total

Intraclass Correlation and Reliability

Summary of Reliability of Plant Ratings

	Baselin	Ie	Follow-up	
	R_{TT}	R _{II}	R _{TT}	R _{II}
One-Way Anova	0.97	0.95	0.97	0.94
Two-Way Random Effects	0.97	0.95	0.97	0.94
Two-Way Fixed Effects	0.98	0.96	0.98	0.97
Source	Label	Baseli	ne MS	
Plants	BMS	628.	.667	
Within	WMS	17.700		
Raters	JMS	57.8	800	
Raters X Plants	EMS	13.3	244	

Cronbach's Alpha

Source	df	SS	MS
Respondents (BMS) Items (JMS) Resp. x Items (EMS)	4 1 4	11.6 0.1 4.4	2.9 0.1 1.1
Total	9	16.1	
Alpha = <u>2.9 - 1.1</u> = 2.9	<u>1.8</u> 2.9	= 0.62	

Alpha by Number of Items and Inter-item Correlations

$$alpha_{st} = \frac{K \overline{r}}{1 + (K - 1) \overline{r}}$$

K = number of items in scale

Quality of Care 23 02/11/04

Alpha for Different Numbers of Items and Homogeneity

Average Inter-item Correlation (\overline{r})

Number of Items ((K) .0	.2	.4	.6	.8	1.0
2	.000	.333	.572	.750	.889	1.000
4	.000	.500	.727	.857	.941	1.000
6	.000	.600	.800	.900	.960	1.000
8	.000	.666	.842	.924	.970	1.000

Spearman-Brown Prophecy Formula

alpha y =
$$\left(\frac{N \cdot alpha}{1 + (N - 1) * alpha}\right)$$

N = how much longer scale y is than scale x

Quality of Care 25 02/11/04

Number of Items and Reliability for Three Versions of the Mental Health Inventory (MHI)

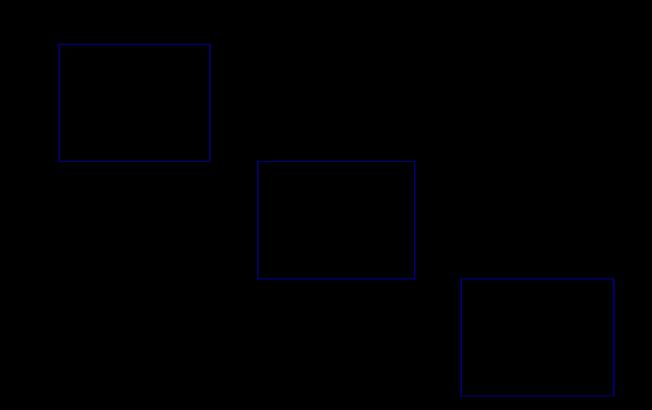
Example Spearman-Brown Calculations

MHI-18: 18/32 (0.98) (1+18/32 -1)*0.98

Quality of Care 27 02/11/04

Reliability Minimum Standards

- 0.70 or above (for group comparisons)
- 0.90 or higher (for individual assessment)
 - > SEM = SD (1- reliability)^{1/2}


Reliability of a Composite Score

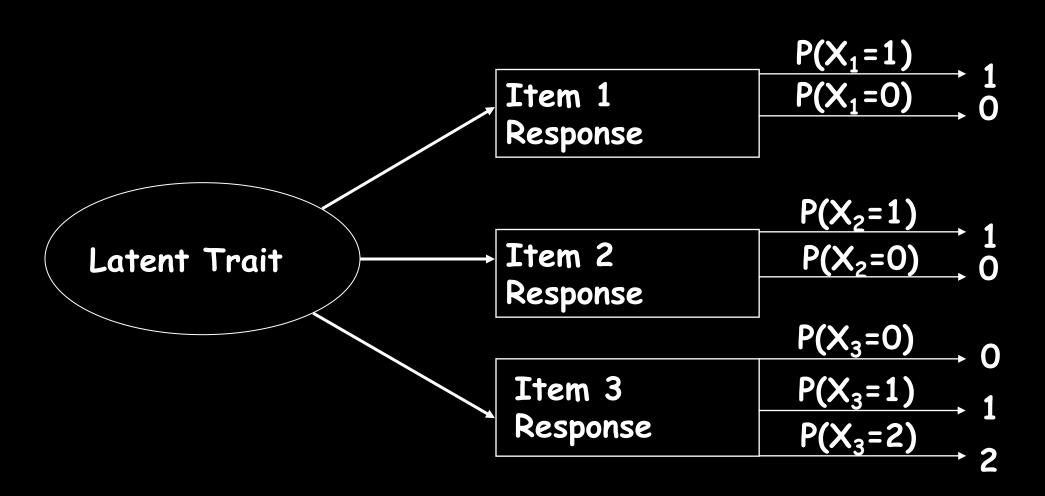
$$\mathbf{Mosier} = \mathbf{1} - \frac{\Sigma(\mathbf{w}_{j}^{2})(\mathbf{S}_{j}^{2}) - \Sigma(\mathbf{w}_{j}^{2})(\mathbf{S}_{j}^{2})(\alpha_{j})}{\Sigma(\mathbf{w}_{j}^{2})(\mathbf{S}_{j}^{2}) + \mathbf{2}\Sigma(\mathbf{w}_{j})(\mathbf{w}_{\kappa})(\mathbf{S}_{j})(\mathbf{S}_{\kappa})(\mathbf{r}_{j\kappa})}$$

- w_j = weight given to component J
- \mathbf{w}_{κ} = weight given to component K
- **S**_j = standard deviation of **J**
- α_j = reliability of J
- $\mathbf{r}_{j\kappa}$ = correlation between J and K

Hypothetical Multitrait/Multi-Item Correlation Matrix

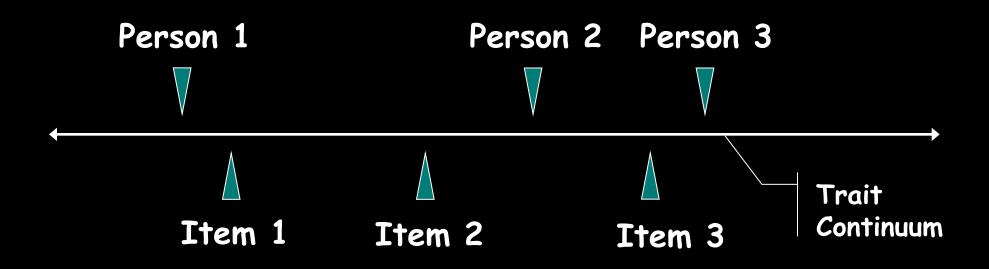
Multitrait/Multi-Item Correlation Matrix for Patient Satisfaction Ratings

	Technical	Interpersonal	Communication	Financial
Technical				
1	0.66*	0.63†	0.67†	0.28
2	0.55*	0.54†	0.50†	0.25
2 3 4	0.48*	0.41	0.44†	0.26
4	0.59*	0.53	0.56†	0.26
5	0.55*	0.60†	0.56†	0.16
6	0.59*	0.58†	0.57†	0.23
Interpersonal				
1	0.58	0.68*	0.63†	0.24
2 3	0.59†	0.58*	0.61†	0.18
3	0.62†	0.65*	0.67†	0.19
4	0.53†	0.57*	0.60†	0.32
4 5 6	0.54	0.62*	0.58†	0.18
6	0.48†	0.48*	0.46†	0.24

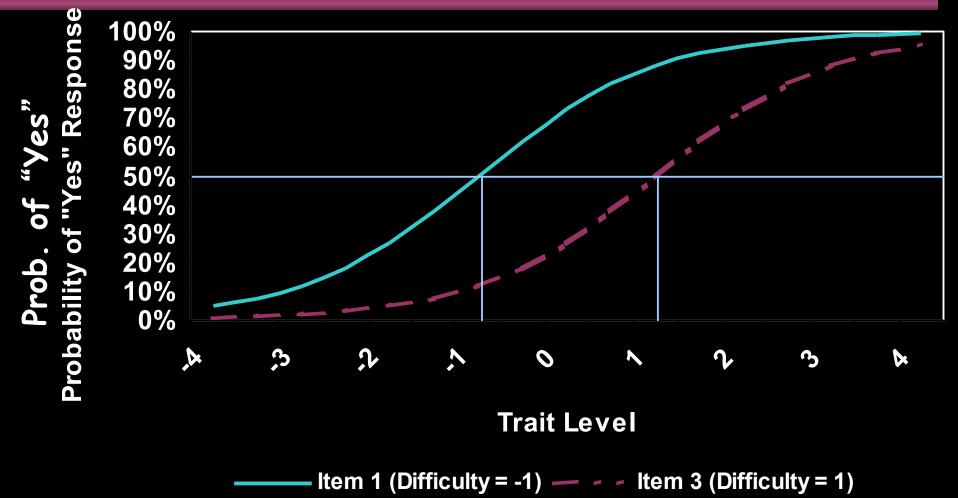

Note - Standard error of correlation is 0.03. Technical = satisfaction with technical quality. Interpersonal = satisfaction with the interpersonal aspects. Communication = satisfaction with communication. Financial = satisfaction with financial arrangements. *Item-scale correlations for hypothesized scales (corrected for item overlap). †Correlation within two standard errors of the correlation of the item with its hypothesized scale.

IRT

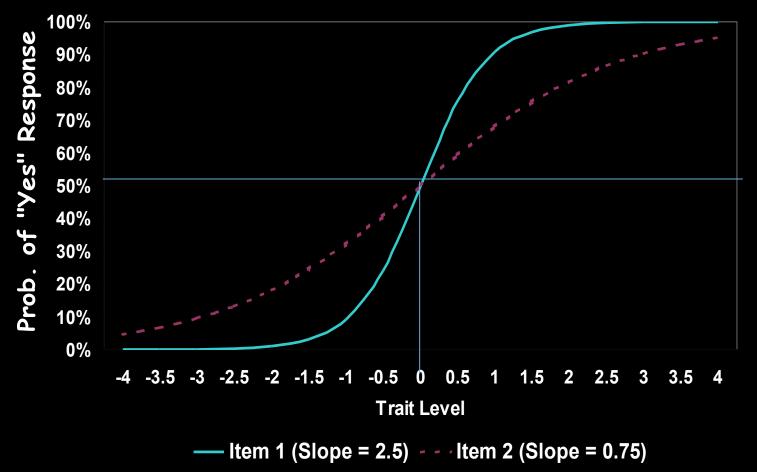
RANDHEALTH


Latent Trait and Item Responses

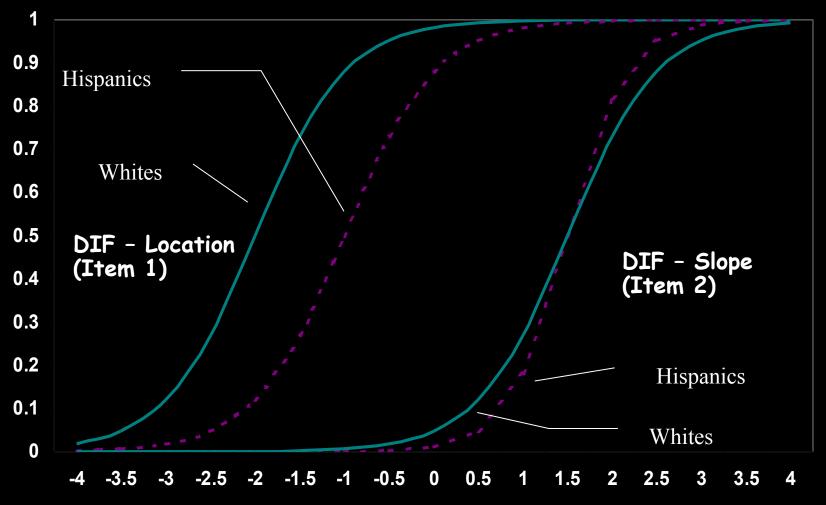
RANDHEALTH


Quality of Care 33 02/11/04

Item Responses and Trait Levels


Item Characteristic Curves (1-Parameter Model)

RANDHEALTH


Quality of Care 35 02/11/04

Item Characteristic Curves (2-Parameter Model)

Quality of Care 36 02/11/04

Dichotomous Items Showing DIF (2-Parameter Model)

RANDHEALTH

Forms of Validity

- Content, Criterion
- Construct Validity

Quality of Care 38 02/11/04

- Does measure relate to other measures in ways consistent with hypotheses?
- Responsiveness to change

Relative Validity Analyses

- Form of "known groups" validity
- Relative sensitivity of measure to important clinical differences

Relative Validity Example

	Severity of Heart Disease							
	None	Mild	Severe	F-ratio	Relative Validity			
Scale #1	87	90	91	2				
Scale #2	74	78	88	10	5			
Scale #3	77	87	95	20	10			

Responsiveness to Change and Minimally Important Difference

- HRQOL measures should be responsive to interventions that changes HRQOL
- Evaluating responsiveness requires assessment of HRQOL
 - pre-post intervention of known efficacy
 - at two times in tandem with gold standard

Two Essential Elements

- External indicator of change (Anchors)
 - mean change in HRQOL scores among people who have a "minimal" change in HRQOL.
- Amount of HRQOL change

External Indicator of Change (A)

• Overall has there been any change in your asthma since the beginning of the study?

Much improved; Moderately improved; Minimally improved

No change

Much worse; Moderately worse; Minimally worse

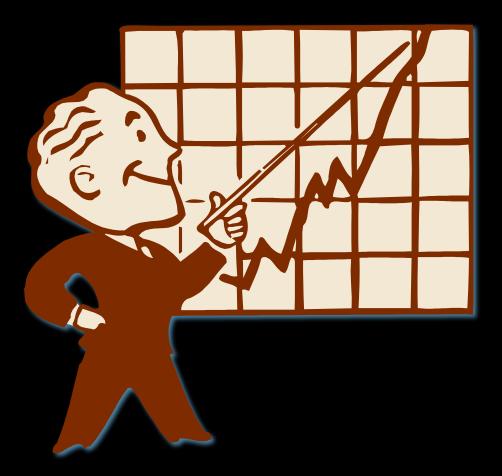
External Indicator of Change (B)

Rate your overall condition. This rating should encompass factors such as social activities, performance at work or school, seizures, alertness, and functional capacity; that is, your overall quality of life.

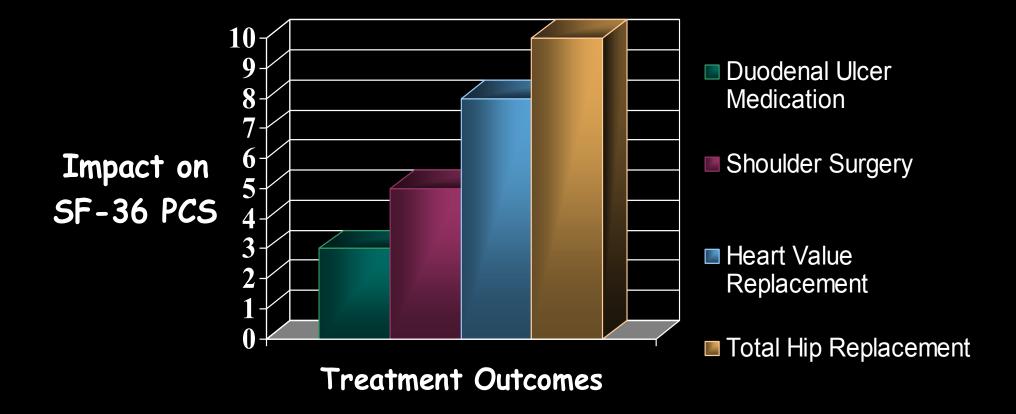
7 response categories; ranging from <u>no</u> <u>impairment</u> to <u>extremely severe</u> <u>impairment</u>

External Indicator of Change (C)

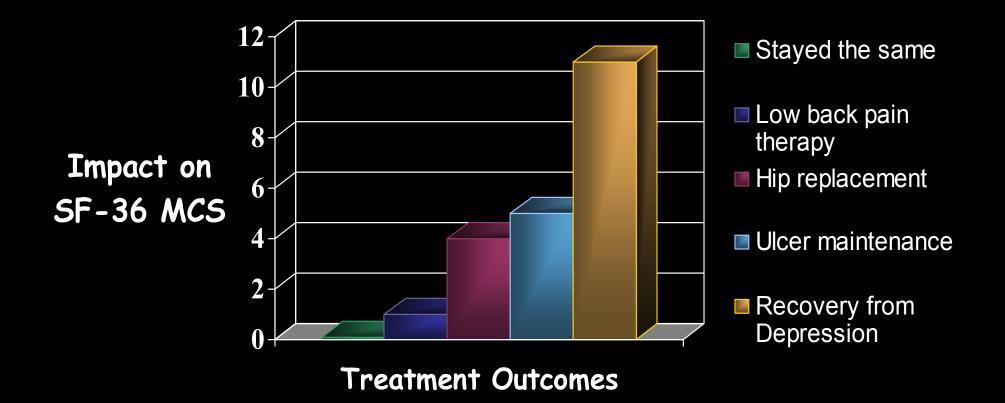
 - "changed" group = seizure free (100% reduction in seizure frequency)


- "unchanged" group = <50% change in seizure frequency

Responsiveness Indices


- (1) Effect size (ES) = D/SD
- (2) Standardized Response Mean (SRM) = D/SD⁺
- (3) Guyatt responsiveness statistic (RS) = D/SD[‡]
 - D = raw score change in "changed" group;
 SD = baseline SD;
 SD[†] = SD of D;
 SD[‡] = SD of D among "unchanged"

Effect Size Benchmarks


- Small: 0.20->0.49
- Moderate: 0.50->0.79
- Large: 0.80 or above

Treatment Impact on PCS

Treatment Impact on MCS

Two Steps in Factor Analysis

- Identify number of dimensions or factors
- <u>http://www.gim.med.ucla.edu/FacultyPages/Hays/</u>
- Rotate to simple structure

Factor Rotation

- Unrotated factors are complex and hard to interpret
- Rotation improves "simple" structure (more high and low loadings) and interpretability

Rotation

- Communalities unchanged by rotation
- Cumulative % of variance explained by common factors unchanged
- Varimax (orthogonal rotation) maximizes sum of squared factor loadings (after dividing each loading by the item's communality)
- Promax allows factors to be correlated

SF-36 Factor Analysis in Singapore

	United States				
	Physical	Mental			
PF	0.85	0.12			
RP	0.81	0.27			
BP	0.76	0.28			
GH	0.69	0.37			
VT	0.47	0.64			
SF	0.42	0.67			
RE	0.17	0.78			
MH	0.17	0.87			

SF-36 Factor Analysis in Singapore

	English		Chinese		United States	
	Physical	Mental	Physical	Mental	Physical	Mental
PF	0.60	0.14	0.75	0.03	0.85	0.12
RP	0.85	0.12	0.78	0.25	0.81	0.27
BP	0.46	0.53	0.53	0.51	0.76	0.28
GH	0.14	0.74	0.32	0.66	0.69	0.37
VT	0.15	0.84	0.16	0.83	0.47	0.64
SF	0.49	0.56	0.48	0.56	0.42	0.67
RE	0.77	0.18	0.62	0.36	0.17	0.78
MH	0.12	0.83	0.10	0.86	0.17	0.87

What Factor Analysis of SF-36 Tells Us

- Patterns of subscale loadings vary among subgroups
- Distinct scoring protocols may be needed for east versus western countries

