

Evaluating Self-Report Data Using Psychometric Methods

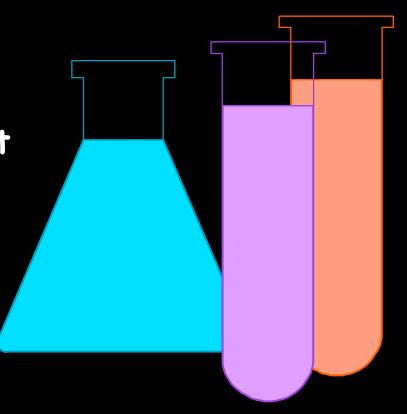
Ron D. Hays, PhD (hays@rand.org)

February 9, 2005 (3:00-6:00pm)

HS 249F

Four Types of Data Collection Errors

- Coverage Error
 Does each person in population have an equal chance of selection?
- Sampling Error
 Are only some members of the population sampled?
- Nonresponse Error
 Do people in the sample who respond differ from those who do not?
- Measurement Error
 Are inaccurate answers given to survey questions?


What's a Good Measure?

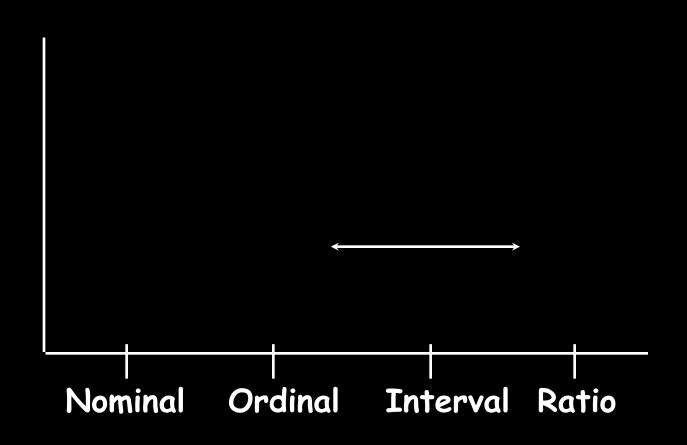
 Same person gets same score (reliability)

 Different people get different scores (validity)

 People get scores you expect (validity)

 It is practical to use (feasibility)

How Are Good Measures Developed?


- · Review literature
- Expert input (patients and clinicians)
- · Define constructs you are interested in
- Draft items (item generation)
- · Pretest
 - Cognitive interviews
 - Field and pilot testing
- Revise and test again
- Translate/harmonize across languages

Scales of Measurement and Their Properties

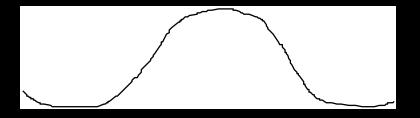
Property of Numbers

Type of Scale	Rank Order	Equal Interval	Absolute 0
Nominal	No	No	No
Ordinal	Yes	No	No
Interval	Yes	Yes	No
Ratio	Yes	Yes	Yes

Measurement Range for Health Outcome Measures

Indicators of Acceptability

· Response rate

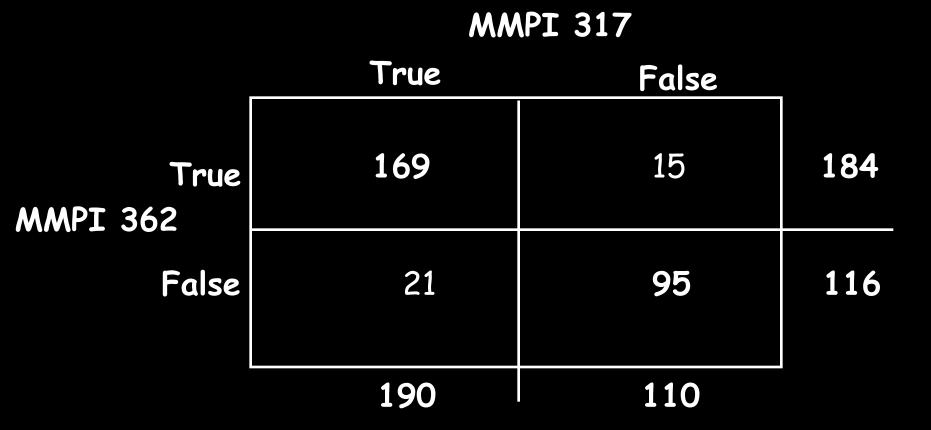

Administration time

· Missing data (item, scale)

Variability

- · All scale levels are represented
- · Distribution approximates bell-shaped "normal"

Measurement Error


```
observed = true + systematic + random
score error error
(bias)
```

Flavors of Reliability

- Test-retest (administrations)
- Intra-rater (raters)
- Internal consistency (items)

Test-retest Reliability of MMPI 317-362 r = 0.75

I am more sensitive than most other people.

Kappa Coefficient of Agreement (Corrects for Chance)

Example of Computing KAPPA

		Rater A					Row
		1	2	3	4	5	Sum
	1	1	1				2
	2		2				2
Rater B	3			2			2
	4				2		2
	5					2	2
Column S	um	1	3	2	2	2	10

Example of Computing KAPPA (Continued)

$$P_{c} = \frac{(1 \times 2) + (3 \times 2) + (2 \times 2) + (2 \times 2) + (2 \times 2)}{(10 \times 10)} = 0.20$$

$$P_{obs.} = \frac{9}{10} = 0.90$$
Kappa = $\frac{0.90 - 0.20}{1 + 0.20} = 0.87$

Guidelines for Interpreting Kappa

Conclusion Poor

Kappa < .40

Conclusion Poor

Kappa < 0.0

Fair

.40 - .59

Slight

.00 - .20

Good

.60 - .74

Fair

.21 - .40

Excellent > .74

Moderate

.41 - .60

Substantial

.61 - .80

Almost perfect .81 - 1.00

Fleiss (1981)

Landis and Koch (1977)

RANDHEALTH

Ratings of Height of Houseplants

Plan	t	Baseline Height	Follow-up Height	Experimental Condition
A1	R1	120	121	1
	R2	118	120	•
A2	D1	094	005	2
	R1 R2	084 096	085 088	2
B 1	C 4	107	100	
	R1 R2	107 105	108 104	2
B2			100	
	R1 R2	094 097	100 104	1
<i>C</i> 1				
	R1 R2	085 091	088 096	2

RANDHEALTH

Ratings of Height of Houseplants (Cont.)

Plan	t	Baseline Height	Follow-up Height	Experimental Condition
<i>C</i> 2	R1 R2	079 078	086 092	1
D1	R1 R2	070 072	076 080	1
D2	R1 R2	054 056	056 060	2
E1	R1 R2	085 097	101 108	1
E2	R1 R2	090 092	084 096	2

RANDHEALTH

Reliability of Baseline Houseplant Ratings

Ratings of Height of Plants: 10 plants, 2 raters

Baseline Results

Source	DF	SS	MS	F
Plants	9	5658	628.667	35.52
Within	10	177	17.700	
Raters	1	57.8	57.800	
Raters x Plants	9	119.2	13.244	
tal	19	5835		

Sources of Variance in Baseline Houseplant Height

Source	dfs	MS	
Plants (N)	9	628.67	(BMS)
Within	10	17.70	(WMS)
Raters (K)	1	57.80	(JMS)
Raters x Plants	9	13.24	(EMS)
Total	19		

Intraclass Correlation and Reliability

Model	Reliability	Intraclass Correlation
One-Way	MS _{BMS} - MS _{WMS}	MS _{BMS} - MS _{WMS}
	MS _{BMS}	MS _{BMS} + (K-1)MS _{WMS}
Two-Way	MS _{BMS} - MS _{EMS}	MSBMS - MSEMS
Fixed	MS _{BMS}	MS _{EMS} + (K-1)MS _{EMS}
Two-Way	N (MSBMS - MSEMS)	MS _{BMS} - MS _{EMS}
Random A	MS _{BMS} +MS _{MS} - MS _{EMS}	MS_{BMS} + $(K-1)MS_{EMS}$ + $K(MS_{JMS} - MS_{EMS})/N$

Summary of Reliability of Plant Ratings

	Baseline	:	Follow-up	
One-Way Anova Two-Way Random Effects Two-Way Fixed Effects	R _{TT} 0.97 0.97 0.98	R _{II} 0.95 0.95 0.96	R _{TT} 0.97 0.97 0.98	R _{II} 0.94 0.94 0.97
Source	Label	Baseli	ne MS	
Plants	BMS	628.	667	
Within	WMS	17.700		
Raters	JMS	57 .8	800	
Raters X Plants	EMS	13.3	244	

Cronbach's Alpha

	2.9
0.1	0.1
4.4	1.1
	11.6 0.1 4.4

Total

9

16.1

Alpha =
$$2.9 - 1.1 = 1.8 = 0.62$$

2.9 2.9

Alpha by Number of Items and Inter-item Correlations

alpha_{st} =
$$\frac{K \overline{r}}{1 + (K - 1) \overline{r}}$$

K = number of items in scale

Alpha for Different Numbers of Items and Homogeneity

Average Inter-item Correlation (\overline{r})

Number of Items	(K) .0	.2	.4	.6	.8	1.0
2	.000	.333	.572	.750	.889	1.000
4	.000	.500	.727	.857	.941	1.000
6	.000	.600	.800	.900	.960	1.000
8	.000	.666	.842	.924	.970	1.000

Spearman-Brown Prophecy Formula

alpha
$$y = \left(\frac{N \cdot \text{alpha}_{\times}}{1 + (N - 1) \cdot \text{alpha}_{\times}}\right)$$

N = how much longer scale y is than scale x

Number of Items and Reliability for Three Versions of the Mental Health Inventory (MHI)

Example Spearman-Brown Calculations

MHI-18

18/32 (0.98) (1+(18/32 -1)*0.98

= 0.55125/0.57125 = 0.96

Reliability Minimum Standards

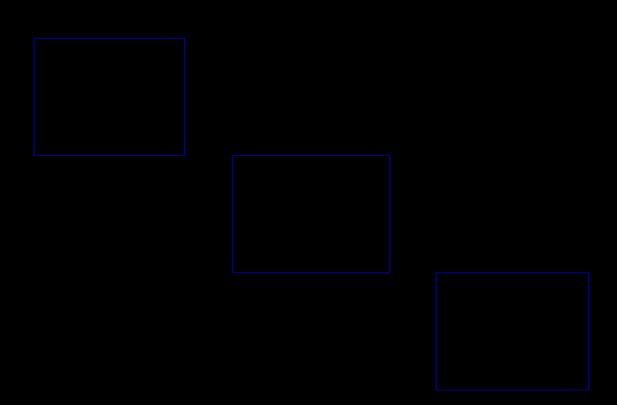
- 0.70 or above (for group comparisons)
- 0.90 or higher (for individual assessment)
 - > SEM = SD (1 reliability)^{1/2}

Reliability of a Composite Score

Mosier =
$$1 - \frac{\sum (\mathbf{w}_j^2)(\mathbf{S}_j^2) - \sum (\mathbf{w}_j^2)(\mathbf{S}_j^2)(\alpha_j)}{\sum (\mathbf{w}_j^2)(\mathbf{S}_j^2) + 2\sum (\mathbf{w}_j)(\mathbf{w}_k)(\mathbf{S}_j)(\mathbf{S}_k)(\mathbf{r}_{jk})}$$

w_j = weight given to component J

 \mathbf{w}_{κ} = weight given to component K

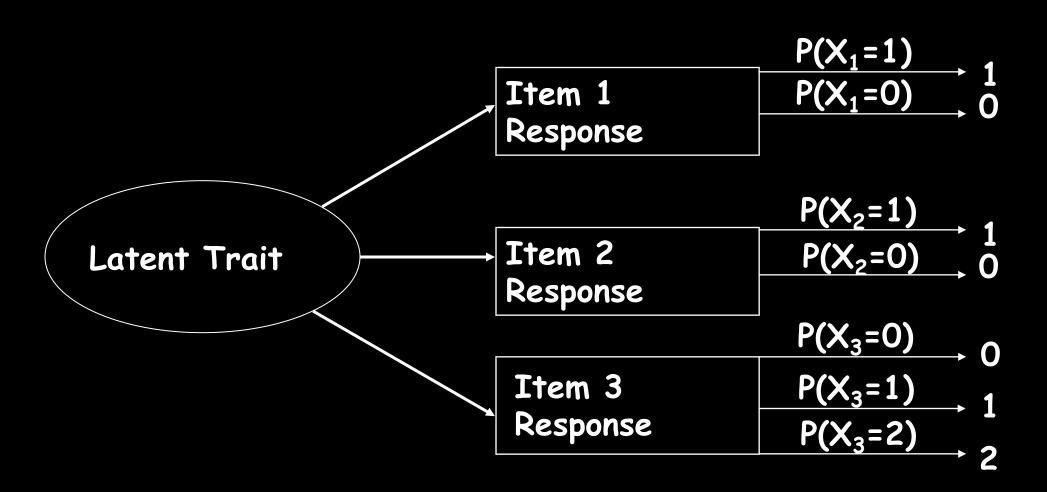

S_i = standard deviation of J

 α_i = reliability of J

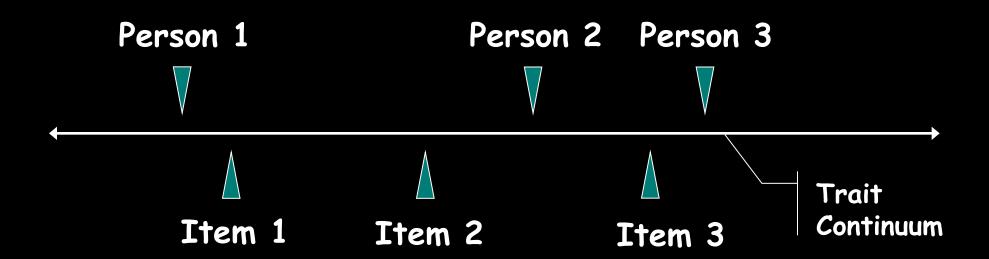
r_{ik} = correlation between J and K

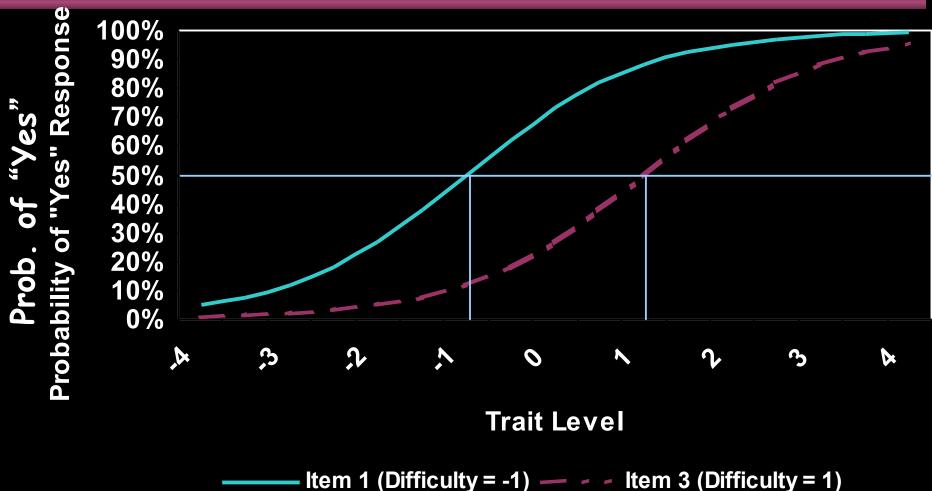
Hypothetical Multitrait/Multi-Item Correlation Matrix

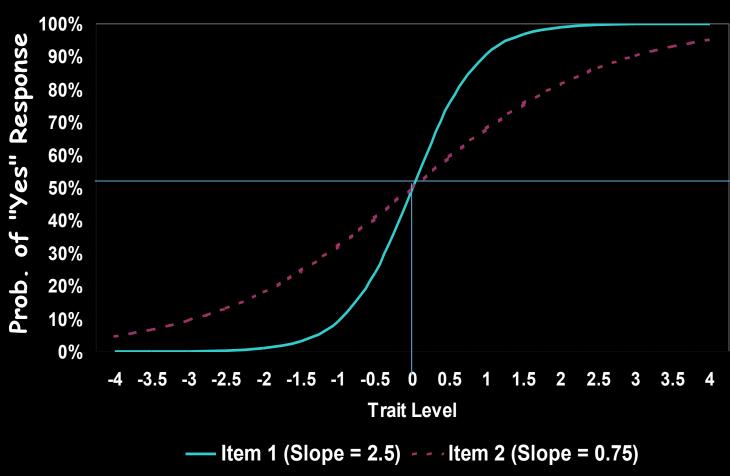
Multitrait/Multi-Item Correlation Matrix for Patient Satisfaction Ratings

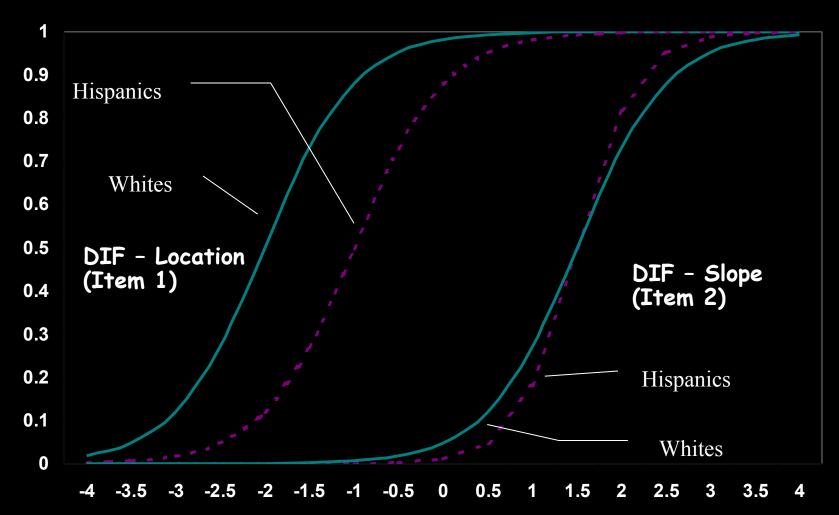

	Technical	Interpersonal	Communication	Financial
Technical				
1	0.66*	0.63†	0.67†	0.28
2	0.55*	0.54†	0.50†	0.25
3 4	0.48*	0.41	0.44†	0.26
4	0.59*	0.53	0.56†	0.26
5	0.55*	0.60†	0.56†	0.16
6	0.59*	0.58†	0.57†	0.23
Interpersonal				
1	0.58	0.68*	0.63†	0.24
2	0.59†	0.58*	0.61†	0.18
3	0.62†	0.65*	0.67†	0.19
4	0.53†	0.57*	0.60†	0.32
5	0.54	0.62*	0.58†	0.18
6	0.48†	0.48*	0.46†	0.24

Note - Standard error of correlation is 0.03. Technical = satisfaction with technical quality. Interpersonal = satisfaction with the interpersonal aspects. Communication = satisfaction with communication. Financial = satisfaction with financial arrangements. *Item-scale correlations for hypothesized scales (corrected for item overlap). †Correlation within two standard errors of the RAND HEALTH


IRT


Latent Trait and Item Responses


Item Responses and Trait Levels


Item Characteristic Curves (1-Parameter Model)

Item Characteristic Curves (2-Parameter Model)

Dichotomous Items Showing DIF (2-Parameter Model)

Forms of Validity

- · Content, Criterion
- Construct Validity

Construct Validity

- Does measure relate to other measures in ways consistent with hypotheses?
- Responsiveness to change

Relative Validity Analyses

- · Form of "known groups" validity
- Relative sensitivity of measure to important clinical differences

Relative Validity Example

Severity of Heart Disease

	None	Mild	Severe	F-ratio	Relative Validity
Scale #1	91	90	87	2	
Scale #2	88	78	74	10	5
Scale #3	95	87	77	20	10

Responsiveness to Change and Minimally Important Difference

- · HRQOL measures should be responsive to interventions that changes HRQOL
- Evaluating responsiveness requires assessment of HRQOL
 - pre-post intervention of known efficacy
 - at two times in tandem with gold standard

Two Essential Elements

- External indicator of change (Anchors)
 - mean change in HRQOL scores among people who have a "minimal" change in HRQOL.
- Amount of HRQOL change

External Indicator of Change (A)

 Overall has there been any change in your asthma since the beginning of the study?

Much improved; Moderately improved; Minimally improved

No change

Much worse; Moderately worse; Minimally worse

External Indicator of Change (B)

Rate your overall condition. This rating should encompass factors such as social activities, performance at work or school, seizures, alertness, and functional capacity; that is, your overall quality of life.

7 response categories; ranging from <u>no</u> <u>impairment</u> to <u>extremely severe</u> <u>impairment</u>

External Indicator of Change (C)

- "changed" group = seizure free (100% reduction in seizure frequency)

- "unchanged" group = <50% change in seizure frequency

Responsiveness Indices

- (1) Effect size (ES) = D/SD
- (2) Standardized Response Mean (SRM) = D/SD[†]
- (3) Guyatt responsiveness statistic (RS) = D/SD^{\dagger}

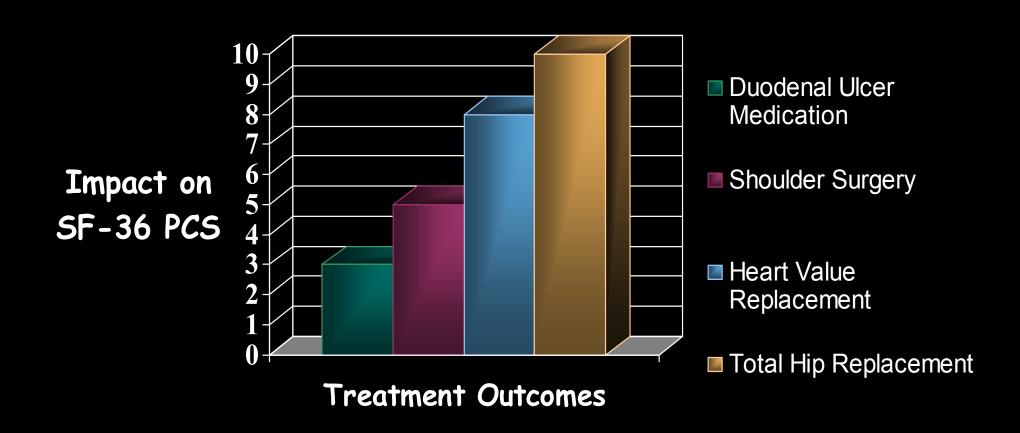
```
D = raw score change in "changed" group;

SD = baseline SD;

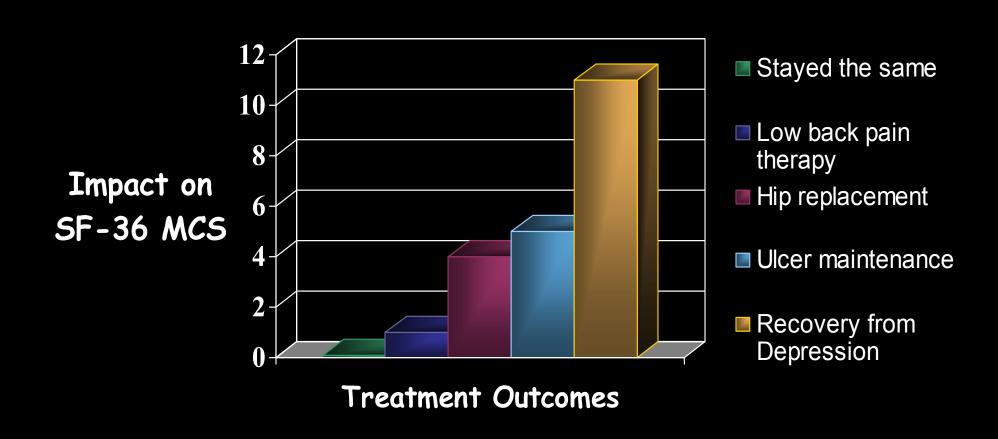
SD<sup>†</sup> = SD of D;

SD<sup>‡</sup> = SD of D among "unchanged"
```

Effect Size Benchmarks


· Small: 0.20->0.49

Moderate: 0.50->0.79


· Large: 0.80 or above

Treatment Impact on PCS

Treatment Impact on MCS

Individual Change

- Interest in knowing how many patients benefit from group intervention
- Tracking progress on individual patients

Methods

- 54 patients
- · Average age = 56; 84% white; 58% female
- Self-administered SF-36 version 2 at baseline and about at end of therapy (about 6 weeks later).

SF-36 Version 2

- · Physical functioning (10 items)
- Role limitations/physical (4 items)
- · Pain (2 items)
- General health perceptions (5 items)
- Social functioning (2 items)
- Energy/fatigue (4 items)
- · Role limitations/emotional (3 items)
- Emotional well-being (5 items)

Scoring the SF-36

- *Average or sum all items in the same scale.
- ·Transform average or sum to
 - · 0 (worse) to 100 (best) possible range
 - \cdot z-score (mean = 0, SD = 1)
 - \cdot T-score (mean = 50, SD = 10)

$$\sqrt{T}$$
-score = 50 + (z-score * 10)

t-test for within group change

$$\bullet X_D/(SD_d/n^{1/2})$$

 X_D = is mean difference, SD_d = standard deviation of difference

Formulas for Significance of Individual Change

Standard error of measurement (SEM)	SD _b * (1- reliability) ^{1/2}
Standard error of prediction (SEp)	SD _b * (1- reliability ²) ^{1/2}
SEM CI around Time 1 score	Time 1 +- 2 SEM
SEp CI around Time 1 score	Time 1 +- 2 SEp

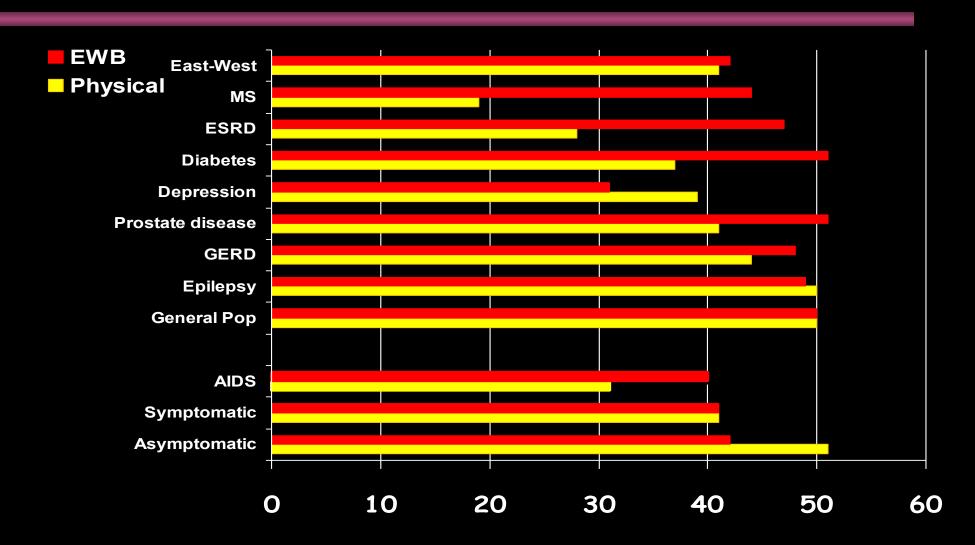
Estimated True Score for Score of 60

- · Mean + reliability (score mean)
- 50 + 0.90 (60 50) = 59

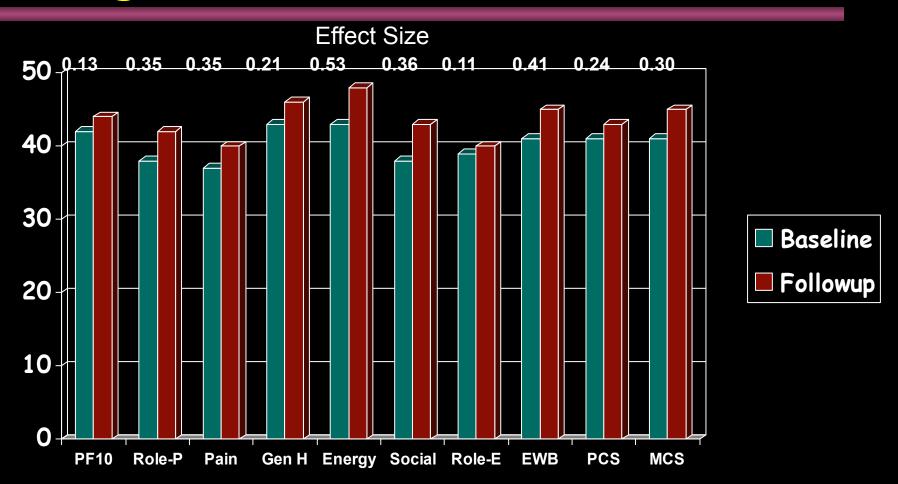
Reliable Change Index

· (X₂ - X₁₎/ (SEM * SQRT [2])

Formulas for Significance of Individual Change


SEM 95% CI	1.96 * SD _b * (1- reliability) ^{1/2}
SEp 90% CI	1.64* SD _b * (1- reliability ²) ^{1/2}
SEp 95% CI	1.96* SD _b * (1- reliability ²) ^{1/2}
Estimated true score	Mean + reliability (score – mean)
Reliable change index	X ₂ -X ₁ /

RANDHEALTH = standard deviation at baseline


Minimum Delta for Individual Significance

- · SEM: > 1.96 SEM
- RCI: > 1.96 * SQRT (2) * SEM
- SEp-90: > 1.64 SEp; SEp-95: > 1.96 SEp

Physical Functioning and Emotional Well-Being at Baseline for 54 Patients at UCLA-Center for East West Medicine

Change in SF-36 Scores Over Time

Significance of Group Change

			- indings
	Delta	t-test	prob.
PF-10	1.7	2.38	.0208
RP-4	4.1	3.81	.0004
BP-2	3.6	2.59	.0125
GH-5	2.4	2.86	.0061
EN-4	5.1	4.33	.0001
SF-2	4.7	3.51	.0009
RE-3	1.5	0.96	.3400 <-
EWB-5	4.3	3.20	.0023
PCS	2.8	3.23	.0021
MCS	3.9	2.82	.0067

Amount of Change in Observed Score
Needed for Significant Change

	SEM	90%	95%	RCI	Effect
		SEp	SEp		size
PF-10	5.9	6.9	8.2	8.4	0.47-0.67
RP-4	6.0	6.9	8.3	8.4	0.52-0.72
BP-2	7.4	8.4	10.1	10.4	0.72-1.01
GH-5	9.2	10.4	12.5	13.0	0.80-1.13
EN-4	9.0	10.1	12.0	12.8	0.94-1.33
SF-2	9.8	11.1	13.3	13.8	0.76-1.07
RE-3	6.8	8.0	9.5	9.7	0.50-0.71
EWB-5	9.5	10.6	12.7	13.4	0.90-1.26
PCS	5.0	5.9	7.0	7.1	0.43-0.62
MCS	6.9	8.0	9.5	9.7	0.52-0.73

Proportion of 54 Cases Declining Significantly

	SEM	SEp 90	SEp 95	RCI
PF-10	9%	7%	2%	2%
RP-4	7%	6%	2%	2%
BP-2	17%	11%	9%	7%
GH-5	4%	0%	0%	0%
EN-4	4%	4%	2%	2%
SF-2	13%	11%	6%	4%
RE-3	19%	19%	15%	15%
EWB-5	9%	6%	6%	4%
PCS	7%	7%	7%	7%
MCS	13%	11%	11%	11%

Proportion of 54 Cases Improving Significantly

	SEM	SEp 90	SEp 95	RCI
PF-10	19%	15%	13%	13%
RP-4	35%	31%	30%	31%
BP-2	31%	28%	24%	22%
GH-5	9%	7%	7%	7%
EN-4	24%	17%	11%	9%
SF-2	30%	20%	17%	17%
RE-3	24%	19%	15%	15%
EWB-5	26%	20%	19%	19%
PCS	33%	30%	24%	24%
MCS	37%	30%	22%	22%

% Improved - % Declined

	SEM	SEp 90	SEp 95	RCI
PF-10	10%	8%	11%	11%
RP-4	28%	25%	28%	29%
BP-2	14%	17%	15%	15%
GH-5	5%	7%	7%	7%
EN-4	11%	13%	9%	7%
SF-2	11%	9%	11%	13%
RE-3	5%	0%	0%	0%
EWB-5	19%	14%	13%	15%
PCS	26%	23%	17%	17%
MCS	24%	19%	11%	11%

