

RCMAR/EXPORT Methods Seminar Series Drew (Cobb Room 131)/ UCLA (2nd Floor at Broxton)

December 12, 2011

Anonymous Dedication

"I want to thank you for showing me what it truly means to be a chicken."

Reliability Minimum Standards

- 0.70 or above (for group comparisons)
- 0.90 or higher (for individual assessment)
 - > SEM = SD (1- reliability)^{1/2}

Two Raters' Ratings of GOP Debate Performance on *Excellent* to *Poor* Scale

- Bachman Turner Overdrive (Good, Very Good)
- Ging Rich (Very Good, Excellent)
- Rue Paul (Good, Good)
- Gaylord Perry (Fair, Poor)
- Romulus Aurelius (Excellent, Very Good)
- Sanatorium (Fair, Fair)

Linear and Quadratic Weighted Kappa

	Ρ	F	G	VG	Е
Р	1	.75 (.937)	.50 (.750)	.25 (.437)	0
F	.75 (.937)	1	.75 (.937)	.50 (.750)	.25 (.437)
G	.50 (.750)	.75 (.937)	1	.75 (.937)	.50 (.750)
VG	.25 (.437)	.50 (.750)	.75 (.937)	1	.75 (.937)
E	0	.25 (.437)	.5 (.750)	.75 (.937)	1

 $W_i = 1 - (i/(k - 1))$ I = number of categories ratings differ by k = n of categories

$$W_i = 1 - (i^2 / (k - 1)^2)$$

Intraclass Correlation and Reliability

Model	Reliability	Intraclass Correlation	
One- way	$\frac{MS_{BMS} - MS_{WMS}}{MS_{BMS}}$	$\frac{MS_{BMS} - MS_{WMS}}{MS_{BMS} + (k-1)MS_{WMS}}$	
Two- way fixed	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS}}$	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS} + (k-1)MS_{EMS}}$	
Two- way random	$\frac{N(MS_{BMS} - MS_{EMS})}{NMS_{BMS} + MS_{JMS} - MS_{EMS}}$	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS} + (k-1)MS_{EMS} + k(MS_{JMS} - MS_{EMS})/N}$	
BMS = Between Ratee Mean Square N = n of ratees WMS = Within Mean Square k = n of replicates			
JMS = Item or Rater Mean Square EMS = Ratee x Item (Rater) Mean Square			

01 34 02 45 03 33 04 21 05 54 06 22	Perf	formance Rating	75
Source	df	SS	MS
Candidates (BMS) Raters (JMS) Cand. x Raters (EMS)	5 1 5	15.67 0.00 2.00	3.13 0.00 0.40
Total	11	17.67	
2-way R = <u>2 (3.13 - 0.4</u> 2 (3.13) + 0.0	ICC = 0.80		

GOP Presidential Candidates Responses to Two Questions about Their Health

- Bachman Turner Overdrive (Good, Very Good)
- Ging Rich (Very Good, Excellent)
- Rue Paul (Good, Good)
- Gaylord Perry (Fair, Poor)
- Romulus Aurelius (Excellent, Very Good)
- Sanatorium (Fair, Fair)

01 34 02 45 03 33 04 21 05 54 06 22	'Effe	cts (Cronbach's	s Alpha)
Source	df	SS	MS
Respondents (BMS) Items (JMS) Resp. x Items (EMS)	5 1 5	15.67 0.00 2.00	3.13 0.00 0.40
Total	11	17.67	
Alpha = <u>3.13 - 0.40</u> 3.13	= <u>2.9</u> 3.13	$\frac{3}{3} = 0.87$	

Overall Satisfaction of 12 Patients with 6 Doctors (2 patients per doctor)

- Dr. Overdrive (p1: Good, p2: Very Good)
- Dr. Rich (p3: Very Good, p4: Excellent)
- Dr. Paul (p5: Good, p6: Good)
- Dr. Perry (p7: Fair, p8: Poor)
- Dr. Aurelius (p9: Excellent, p10: Very Good)
- Dr. Sanatorium (p11: Fair, p12: Fair)

01 34 02 45 03 33 04 21 05 54 06 22	of Rati	ings of Doctor	
Source	df	SS	MS
Respondents (BMS) Within (WMS)	5 6	15.67 2.00	3.13 0.33
Total	11	17.67	
1-way = <u>3.13 - 0.33</u> 3.13	= <u>2.80</u> 3.13	= 0.89	

Candidates Perceptions of the U.S. Economy in November & December, 2011

- Bachman Turner Overdrive (Good, Very Good)
- Ging Rich (Very Good, Excellent)
- Rue Paul (Good, Good)
- Gaylord Perry (Fair, Poor)
- Romulus Aurelius (Excellent, Very Good)
- Sanatorium (Fair, Fair)

Which model would you use to estimate reliability?

Reliability and SEM

- For z-scores (mean = 0 and SD = 1):
 - Reliability = $1 SE^2$
 - So reliability = 0.90 when SE = 0.32
- For T-scores (mean = 50 and SD = 10):
 - Reliability = $1 (SE/10)^2$
 - So reliability = 0.90 when SE = 3.2

In the past 7 days

- I was grouchy [1st question]
 - Never
 - Rarely
 - Sometimes
 - Often
 - Always
- Theta = 56.1 SE = 5.7 (rel. = 0.68)

In the past 7 days ... I felt like I was read to explode [2nd question]

- Never
- Rarely
- Sometimes
- Often
- Always

Theta = 51.9 SE = 4.8 (rel. = 0.77)

In the past 7 days ...

- I felt angry [3rd question]
 - Never
 - Rarely
 - Sometimes
 - Often
 - Always
- Theta = 50.5 SE = 3.9 (rel. = 0.85)

In the past 7 days ... I felt angrier than I thought I should [4th question]

- Never
- Rarely
- Sometimes
- Often
- Always

• Theta = 48.8 SE = 3.6 (rel. = 0.87)

In the past 7 days ...

- I felt annoyed [5th question]
 - Never
 - Rarely
 - Sometimes
 - Often
 - Always

• Theta = 50.1 SE = 3.2 (rel. = 0.90)

In the past 7 days ...

I made myself angry about something just by thinking about it. [6th question]

- Never
- Rarely
- Sometimes
- Often
- Always
- Theta = 50.2 SE = 2.8 (rel = 0.92)

Theta and SEM estimates

- 56 and 6 (reliability = .68)
- 52 and 5 (reliability = .77)
- 50 and 4 (reliability = .85)
- 49 and 4 (reliability = .87)
- 50 and 3 (reliability = .90)
- 50 and <3 (reliability = .92)

Thank you.

Powerpoint file posted at URL below (freely available for you to use, copy or burn): <u>http://gim.med.ucla.edu/FacultyPages/Hays/</u>

<u>http://www.chime.ucla.edu/measurement/wip.htm</u>

Contact information: <u>drhays@ucla.edu</u> 310-794-2294

For a good time call 8675309 or go to: <u>http://twitter.com/RonDHays</u>

Appendices ANOVA Computations

- Candidate/Respondents SS
 (7²+9²+6²+3²+9²+4²)/2 38²/12 = <u>15.67</u>
- Rater/Item SS (19²+19²)/6 – 38²/12 = 0.00
- Total SS $(3^2+4^2+4^2+5^2+3^2+3^2+2^2+1^2+5^2+4^2+2^2+2^2) - 38^2/10$ $= \underline{17.67}$
- Res. x Item SS= Tot. SS (Res. SS+Item SS)

```
options ls=130 ps=52 nocenter; options nofmterr;
```

data one;

proc freq; tables rater rating;

run;

proc means;

var rater rating;

run;

,

,

,

proc anova;

class id rater; model rating=id rater id*rater; **run**; data one; input id 1-2 rater 4 rating 5; CARDS; 01 13 01 24 02 14 02 25 03 13 03 23 04 12 04 21 05 15 05 24 06 12 06 22 , run: , % GRIP(indata=one,targetv=id,repeatv=rater,dv=rating, type=1,t1=test of GRIP macro,t2=);

GRIP macro is available at: http://gim.med.ucla.edu/FacultyPages/Hays/util.htm

data one; input id 1-2 rater1 4 rater2 5; control=1; CARDS; 01 34 02 45 03 33 04 21 05 54 06 22 ; run; ************* , **DATA** DUMMY; INPUT id 1-2 rater1 4 rater2 5; CARDS; 01 11 02 22 03 33 04 44 05 55 RUN;

DATA NEW; SET ONE DUMMY; PROC FREQ; TABLES CONTROL*RATER1*RATER2 /NOCOL NOROW NOPERCENT AGREE;

,

,

,

data one;

set one;

proc means;

```
var rater1 rater2;
```

run;

proc corr alpha; var rater1 rater2;

run;

Guidelines for Interpreting Kappa

Conclusion	Kappa	Conclusion	Kappa	
Poor	< .40	Poor	< 0.0	
Fair	.4059	Slight	.0020	
Good	.6074	Fair	.2140	
Excellent	> .74	Moderate	.4160	
		Substantial	.6180	
		Almost perfect	.81 - 1.00	
Fleiss (1981)		Landis and Koch (1977)		